UVA10869 - Brownie Points II(线段树)
题目大意:平面上有n个点,Stan和Ollie在玩游戏,游戏规则是:Stan先画一条竖直的线作为y轴,条件是必需要经过这个平面上的某一点,而ollie则画x轴,可是要在Stany画的y轴上经过的点中随意选择一点来作为原点画x轴。然后这个平面就被划分为4个象限,轴上的点都不算,1,3象限的点的个数就是Stan的得分,2,4就是ollie的得分。问Stan每画一条y轴,每条轴上都有个得分的最小值,求这些最小值中的最大值,而且输出这时ollie的得分。
解题思路:将y轴离散化建树,希望每次枚举一个点就能够得到这个点的Stan的得分。从左往右,从上往下处理每一个点,通过线段树能够得到y高度上的点的个数,就是第一象限的得分。然后每次查询完一个点就要将这个点在线段树中删掉。同理得到第三象限的得分。这题还要输出ollie的得分,而且要按顺序,用set来存储。
代码:
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn = 2e5;
#define lson(x) (x<<1)
#define rson(x) ((x<<1) | 1)
int n;
vector<int> pos;
map<int, int>x, y;
set<int> score, vec;
struct Point {
int x, y, score;
}p[maxn];
int cmp_x (const Point &a, const Point &b) {
if (a.x == b.x)
return a.y > b.y;
return a.x < b.x;
}
struct Node {
int l, r, v, addv;
void set (int l, int r, int addv, int v) {
this->l = l;
this->r = r;
this->v = v;
this->addv = addv;
}
}node[4 * maxn + 5];
void add_node (int u, int addv) {
node[u].addv += addv;
node[u].v += (node[u].r - node[u].l + 1) * addv;
}
void pushdown (int u) {
if (node[u].addv) {
add_node(lson(u), node[u].addv);
add_node(rson(u), node[u].addv);
}
}
void pushup (int u) {
node[u].set (node[lson(u)].l, node[rson(u)].r, 0, node[lson(u)].v + node[rson(u)].v);
}
void build (int u, int l, int r) {
if (l == r) {
node[u].set (l, r, 0, y[pos[l]]);
return ;
}
int m = (l + r)>>1;
build (lson(u), l, m);
build (rson(u), m + 1, r);
pushup(u);
}
void update (int u, int l, int r, int add) {
if (node[u].l >= l && node[u].r <= r) {
add_node(u, add);
return;
}
pushdown(u);
int m = (node[u].l + node[u].r)>>1;
if (l <= m)
update (lson(u), l, r, add);
if (r > m)
update (rson(u), l, r, add);
pushup(u);
}
int query (int u, int l, int r) {
if (node[u].l >= l && node[u].r <= r)
return node[u].v;
pushdown(u);
int m = (node[u].l + node[u].r)>>1;
int ans = 0;
if (l <= m)
ans += query(lson(u), l, r);
if (r > m)
ans += query(rson(u), l, r);
pushup(u);
return ans;
}
void init () {
x.clear();
y.clear();
pos.clear();
for (int i = 0; i < n; i++) {
scanf ("%d%d", &p[i].x, &p[i].y);
p[i].score = 0;
x[p[i].x]++;
y[p[i].y]++;
pos.push_back(p[i].y);
}
sort (pos.begin(), pos.end());
sort (p, p + n, cmp_x);
pos.erase(unique (pos.begin(), pos.end()), pos.end());
}
void solve_rtop () {
int x;
build(1, 0, (int)pos.size() - 1);
for (int i = 0; i < n; i++) {
x = lower_bound(pos.begin(), pos.end(), p[i].y) - pos.begin();
if (x + 1 <= pos.size() - 1) {
p[i].score += query(1, x + 1, pos.size() - 1);
//printf ("%d %d %d
", p[i].x, p[i].y, x);
}
update (1, x, x, -1);
}
}
void solve_lboutom () {
int x;
build(1, 0, (int)pos.size() - 1);
for (int i = n - 1; i >= 0; i--) {
x = lower_bound(pos.begin(), pos.end(), p[i].y) - pos.begin();
if (x - 1 >= 0) {
p[i].score += query (1, 0, x - 1);
//printf ("%d %d %d
", p[i].x, p[i].y, p[i].score);
}
update (1, x, x, -1);
}
}
void add_ans (int tmp) {
for (set<int>::iterator it = vec.begin(); it != vec.end(); it++)
score.insert(n - tmp - x[p[*it].x] - y[p[*it].y] + 1);
}
void solve () {
init();
solve_lboutom();
solve_rtop();
score.clear();
vec.clear();
int ans = -1;
int tmp = p[0].score;
int pre = p[0].x;
for (int i = 0; i < n; i++) {
if (pre == p[i].x) {
if (tmp == p[i].score)
vec.insert(i);
else if (tmp > p[i].score) {
vec.clear();
vec.insert(i);
tmp = p[i].score;
}
} else {
if (ans <= tmp) {
if (ans < tmp)
score.clear();
add_ans(tmp);
}
ans = max (ans, tmp);
tmp = p[i].score;
pre = p[i].x;
vec.clear();
vec.insert(i);
}
}
if (ans <= tmp) {
if (ans < tmp)
score.clear();
add_ans(tmp);
}
ans = max (ans, tmp);
printf("Stan: %d; Ollie:", ans);
for (set<int>::iterator it = score.begin(); it != score.end(); it++)
printf(" %d", *it);
printf(";
");
}
int main () {
while (scanf ("%d", &n) && n) {
solve();
}
return 0;
}