zoukankan      html  css  js  c++  java
  • HDU 3836 Equivalent SetsTarjan+缩点)

    Problem Description
    To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
    You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
    Now you want to know the minimum steps needed to get the problem proved.
     

    Input
    The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
    Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
     

    Output
    For each case, output a single integer: the minimum steps needed.
     

    Sample Input
    4 0 3 2 1 2 1 3
     

    Sample Output
    4 2
    Hint
    Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
     
    强联通缩点:加入几条边成强联通分量:设缩点后全部点中出度为0的点为d_1,入度为0点为d_2,则答案为max(d_1,d_2);
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<limits.h>
    typedef long long LL;
    using namespace std;
    
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    
    const int maxn=20000+100;
    const int maxm=100000;
    struct node{
        int u,v;
        int next;
    }e[maxm];
    int head[maxn],cntE;
    int DFN[maxn],low[maxn];
    int s[maxm],top,index,cnt;
    int belong[maxn],instack[maxn];
    int in[maxn],out[maxn];
    int n,m;
    void init()
    {
        top=cntE=0;
        index=cnt=0;
        CLEAR(DFN,0);
        CLEAR(head,-1);
        CLEAR(instack,0);
    //    CLEAR(belong,0);
    }
    void addedge(int u,int v)
    {
        e[cntE].u=u;e[cntE].v=v;
        e[cntE].next=head[u];
        head[u]=cntE++;
    }
    void Tarjan(int u)
    {
        DFN[u]=low[u]=++index;
        instack[u]=1;
        s[top++]=u;
        for(int i=head[u];i!=-1;i=e[i].next)
        {
            int v=e[i].v;
            if(!DFN[v])
            {
                Tarjan(v);
                low[u]=min(low[u],low[v]);
            }
            else if(instack[v])
                low[u]=min(low[u],DFN[v]);
        }
        int v;
        if(DFN[u]==low[u])
        {
            cnt++;
            do{
                v=s[--top];
                belong[v]=cnt;
                instack[v]=0;
            }while(u!=v);
        }
    }
    void work()
    {
        REPF(i,1,n)
          if(!DFN[i])  Tarjan(i);
        if(cnt<=1)
        {
            puts("0");
            return ;
        }
        CLEAR(in,0);
        CLEAR(out,0);
        for(int i=0;i<cntE;i++)
        {
            int u=e[i].u,v=e[i].v;
            if(belong[u]!=belong[v])
                in[belong[v]]++,out[belong[u]]++;
        }
        int d_1=0,d_2=0;
        REPF(i,1,cnt)
        {
            if(!in[i])
                d_1++;
            if(!out[i])
                d_2++;
        }
        printf("%d
    ",max(d_1,d_2));
    }
    int main()
    {
        int u,v;
        while(~scanf("%d%d",&n,&m))
        {
            init();
            for(int i=0;i<m;i++)
            {
                scanf("%d%d",&u,&v);
                addedge(u,v);
            }
            work();
        }
        return 0;
    }
    


  • 相关阅读:
    Leetcode645.Set Mismatch错误的集合
    Leetcode622.Design Circular Queue设计循环队列
    Leetcode628.Maximum Product of Three Numbers三个数的最大乘积
    Leetcode633.Sum of Square Numbers平方数之和
    Leetcode617.Merge Two Binary Trees合并二叉树
    Leetcode606.Construct String from Binary Tree根据二叉树创建字符串
    SQL Sever实验二 交互式 SQL
    [bzoj2124]等差子序列_线段树_hash
    [bzoj4084][Sdoi2015]双旋转字符串_hash
    [bzoj1708][Usaco2007 Oct]Money奶牛的硬币_动态规划_背包dp
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/4555545.html
Copyright © 2011-2022 走看看