zoukankan      html  css  js  c++  java
  • HUST 1017 Exact cover(DLX精确覆盖)

    Description

    There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.

    Input

    There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.

    Output

    First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".

    Sample Input

    6 7
    3 1 4 7
    2 1 4
    3 4 5 7
    3 3 5 6
    4 2 3 6 7
    2 2 7
    

    Sample Output

    3 2 4 6

    DLX:精确覆盖和反复覆盖。此题是精确覆盖。

    学习资料;点击打开链接看了一下午。加上bin神的模板。算是懂了。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<string>
    #include<iostream>
    #include<queue>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<bitset>
    using namespace std;
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    typedef long long LL;
    typedef pair<int,int>pil;
    const int maxnnode=100100;
    const int maxn=1005 ;
    const int mod = 1000000007;
    struct DLX{
        int n,m,size;
        int U[maxnnode],D[maxnnode],L[maxnnode],R[maxnnode],Row[maxnnode],Col[maxnnode];
        int H[maxn],S[maxn];
        int ansd,ans[maxn];
        void init(int a,int b)
        {
            n=a;  m=b;
            REPF(i,0,m)
            {
                S[i]=0;
                U[i]=D[i]=i;
                L[i]=i-1;
                R[i]=i+1;
            }
            R[m]=0; L[0]=m;
            size=m;
            REPF(i,1,n)
               H[i]=-1;
        }
        void link(int r,int c)
        {
            ++S[Col[++size]=c];
            Row[size]=r;
            D[size]=D[c];
            U[D[c]]=size;
            U[size]=c;
            D[c]=size;
            if(H[r]<0)  H[r]=L[size]=R[size]=size;
            else
            {
                R[size]=R[H[r]];
                L[R[H[r]]]=size;
                L[size]=H[r];
                R[H[r]]=size;
            }
        }
        void remove(int c)
        {
            L[R[c]]=L[c];R[L[c]]=R[c];
            for(int i=D[c];i!=c;i=D[i])
            {
                for(int j=R[i];j!=i;j=R[j])
                {
                    U[D[j]]=U[j];
                    D[U[j]]=D[j];
                    --S[Col[j]];
                }
            }
        }
        void resume(int c)
        {
            for(int i=U[c];i!=c;i=U[i])
            {
                for(int j=L[i];j!=i;j=L[j])
                    ++S[Col[U[D[j]]=D[U[j]]=j]];
            }
            L[R[c]]=R[L[c]]=c;
        }
        bool Dance(int d)
        {
            if(R[0]==0)
            {
                ansd=d;
                return true;
            }
            int c=R[0];
            for(int i=R[0];i!=0;i=R[i])
            {
                if(S[i]<S[c])//选择1的数量最少的
                    c=i;
            }
            remove(c);
            for(int i=D[c];i!=c;i=D[i])
            {
                ans[d]=Row[i];
                for(int j=R[i];j!=i;j=R[j])  remove(Col[j]);
                if(Dance(d+1))  return true;
                for(int j=L[i];j!=i;j=L[j])  resume(Col[j]);
            }
            resume(c);
            return false;
        }
    };
    DLX L;
    int main()
    {
        int n,m;
        int x,y;
        while(~scanf("%d%d",&n,&m))
        {
            L.init(n,m);
            REPF(i,1,n)
            {
                scanf("%d",&x);
                while(x--)
                {
                    scanf("%d",&y);
                    L.link(i,y);
                }
            }
            if(!L.Dance(0))  printf("NO
    ");
            else
            {
                printf("%d",L.ansd);
                REP(i,L.ansd)
                    printf(" %d",L.ans[i]);
                printf("
    ");
            }
        }
        return 0;
    }
    


  • 相关阅读:
    Metasploit advanced命令使用技巧
    Metasploit命令info使用技巧
    Kali Linux 2020.1b发布了
    设置USB无线网卡为监听模式大学霸IT达人
    解决ifconfig命令未找到
    Metasploit新增技巧提示功能
    Wireshark运算符!=无法正常工作
    解决Kali Linux XFCE桌面Tab无法补全
    Nessus更新到8.9.1
    ASP入门(七)-Response小案例
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/5381174.html
Copyright © 2011-2022 走看看