zoukankan      html  css  js  c++  java
  • HUST 1017 Exact cover(DLX精确覆盖)

    Description

    There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.

    Input

    There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.

    Output

    First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".

    Sample Input

    6 7
    3 1 4 7
    2 1 4
    3 4 5 7
    3 3 5 6
    4 2 3 6 7
    2 2 7
    

    Sample Output

    3 2 4 6

    DLX:精确覆盖和反复覆盖。此题是精确覆盖。

    学习资料;点击打开链接看了一下午。加上bin神的模板。算是懂了。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<string>
    #include<iostream>
    #include<queue>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<bitset>
    using namespace std;
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    typedef long long LL;
    typedef pair<int,int>pil;
    const int maxnnode=100100;
    const int maxn=1005 ;
    const int mod = 1000000007;
    struct DLX{
        int n,m,size;
        int U[maxnnode],D[maxnnode],L[maxnnode],R[maxnnode],Row[maxnnode],Col[maxnnode];
        int H[maxn],S[maxn];
        int ansd,ans[maxn];
        void init(int a,int b)
        {
            n=a;  m=b;
            REPF(i,0,m)
            {
                S[i]=0;
                U[i]=D[i]=i;
                L[i]=i-1;
                R[i]=i+1;
            }
            R[m]=0; L[0]=m;
            size=m;
            REPF(i,1,n)
               H[i]=-1;
        }
        void link(int r,int c)
        {
            ++S[Col[++size]=c];
            Row[size]=r;
            D[size]=D[c];
            U[D[c]]=size;
            U[size]=c;
            D[c]=size;
            if(H[r]<0)  H[r]=L[size]=R[size]=size;
            else
            {
                R[size]=R[H[r]];
                L[R[H[r]]]=size;
                L[size]=H[r];
                R[H[r]]=size;
            }
        }
        void remove(int c)
        {
            L[R[c]]=L[c];R[L[c]]=R[c];
            for(int i=D[c];i!=c;i=D[i])
            {
                for(int j=R[i];j!=i;j=R[j])
                {
                    U[D[j]]=U[j];
                    D[U[j]]=D[j];
                    --S[Col[j]];
                }
            }
        }
        void resume(int c)
        {
            for(int i=U[c];i!=c;i=U[i])
            {
                for(int j=L[i];j!=i;j=L[j])
                    ++S[Col[U[D[j]]=D[U[j]]=j]];
            }
            L[R[c]]=R[L[c]]=c;
        }
        bool Dance(int d)
        {
            if(R[0]==0)
            {
                ansd=d;
                return true;
            }
            int c=R[0];
            for(int i=R[0];i!=0;i=R[i])
            {
                if(S[i]<S[c])//选择1的数量最少的
                    c=i;
            }
            remove(c);
            for(int i=D[c];i!=c;i=D[i])
            {
                ans[d]=Row[i];
                for(int j=R[i];j!=i;j=R[j])  remove(Col[j]);
                if(Dance(d+1))  return true;
                for(int j=L[i];j!=i;j=L[j])  resume(Col[j]);
            }
            resume(c);
            return false;
        }
    };
    DLX L;
    int main()
    {
        int n,m;
        int x,y;
        while(~scanf("%d%d",&n,&m))
        {
            L.init(n,m);
            REPF(i,1,n)
            {
                scanf("%d",&x);
                while(x--)
                {
                    scanf("%d",&y);
                    L.link(i,y);
                }
            }
            if(!L.Dance(0))  printf("NO
    ");
            else
            {
                printf("%d",L.ansd);
                REP(i,L.ansd)
                    printf(" %d",L.ans[i]);
                printf("
    ");
            }
        }
        return 0;
    }
    


  • 相关阅读:
    任意指定一个key获取该key所处在哪个node节点
    记一次mysql的问题处理@20181225
    Vue 自定义校验规则
    Vue 渲染状态标签
    Vue Token拦截跳转
    vue 组件路由问题
    vue npm运行报错
    Vue复习(一)
    从客户端中检测到有潜在危险的 Request.Form
    EF Core for MySql踩坑(二)
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/5381174.html
Copyright © 2011-2022 走看看