zoukankan      html  css  js  c++  java
  • HUST 1017 Exact cover(DLX精确覆盖)

    Description

    There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.

    Input

    There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.

    Output

    First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".

    Sample Input

    6 7
    3 1 4 7
    2 1 4
    3 4 5 7
    3 3 5 6
    4 2 3 6 7
    2 2 7
    

    Sample Output

    3 2 4 6

    DLX:精确覆盖和反复覆盖。此题是精确覆盖。

    学习资料;点击打开链接看了一下午。加上bin神的模板。算是懂了。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<string>
    #include<iostream>
    #include<queue>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<bitset>
    using namespace std;
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    typedef long long LL;
    typedef pair<int,int>pil;
    const int maxnnode=100100;
    const int maxn=1005 ;
    const int mod = 1000000007;
    struct DLX{
        int n,m,size;
        int U[maxnnode],D[maxnnode],L[maxnnode],R[maxnnode],Row[maxnnode],Col[maxnnode];
        int H[maxn],S[maxn];
        int ansd,ans[maxn];
        void init(int a,int b)
        {
            n=a;  m=b;
            REPF(i,0,m)
            {
                S[i]=0;
                U[i]=D[i]=i;
                L[i]=i-1;
                R[i]=i+1;
            }
            R[m]=0; L[0]=m;
            size=m;
            REPF(i,1,n)
               H[i]=-1;
        }
        void link(int r,int c)
        {
            ++S[Col[++size]=c];
            Row[size]=r;
            D[size]=D[c];
            U[D[c]]=size;
            U[size]=c;
            D[c]=size;
            if(H[r]<0)  H[r]=L[size]=R[size]=size;
            else
            {
                R[size]=R[H[r]];
                L[R[H[r]]]=size;
                L[size]=H[r];
                R[H[r]]=size;
            }
        }
        void remove(int c)
        {
            L[R[c]]=L[c];R[L[c]]=R[c];
            for(int i=D[c];i!=c;i=D[i])
            {
                for(int j=R[i];j!=i;j=R[j])
                {
                    U[D[j]]=U[j];
                    D[U[j]]=D[j];
                    --S[Col[j]];
                }
            }
        }
        void resume(int c)
        {
            for(int i=U[c];i!=c;i=U[i])
            {
                for(int j=L[i];j!=i;j=L[j])
                    ++S[Col[U[D[j]]=D[U[j]]=j]];
            }
            L[R[c]]=R[L[c]]=c;
        }
        bool Dance(int d)
        {
            if(R[0]==0)
            {
                ansd=d;
                return true;
            }
            int c=R[0];
            for(int i=R[0];i!=0;i=R[i])
            {
                if(S[i]<S[c])//选择1的数量最少的
                    c=i;
            }
            remove(c);
            for(int i=D[c];i!=c;i=D[i])
            {
                ans[d]=Row[i];
                for(int j=R[i];j!=i;j=R[j])  remove(Col[j]);
                if(Dance(d+1))  return true;
                for(int j=L[i];j!=i;j=L[j])  resume(Col[j]);
            }
            resume(c);
            return false;
        }
    };
    DLX L;
    int main()
    {
        int n,m;
        int x,y;
        while(~scanf("%d%d",&n,&m))
        {
            L.init(n,m);
            REPF(i,1,n)
            {
                scanf("%d",&x);
                while(x--)
                {
                    scanf("%d",&y);
                    L.link(i,y);
                }
            }
            if(!L.Dance(0))  printf("NO
    ");
            else
            {
                printf("%d",L.ansd);
                REP(i,L.ansd)
                    printf(" %d",L.ans[i]);
                printf("
    ");
            }
        }
        return 0;
    }
    


  • 相关阅读:
    bzoj 2257 (JSOI 2009) 瓶子与燃料
    bzoj 2257 (JSOI 2009) 瓶子与燃料
    splay 模板 洛谷3369
    费用流 模板 洛谷3381
    bzoj 1024 [SCOI2009]生日快乐——模拟
    bzoj 3231 [Sdoi2008]递归数列——矩阵乘法
    hdu 5823 color II——子集dp(独立集)
    bzoj 1093 [ZJOI2007]最大半连通子图——缩点+拓扑
    洛谷 3959 宝藏——枚举+状压dp
    bzoj 1034 [ZJOI2008]泡泡堂BNB——贪心
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/5381174.html
Copyright © 2011-2022 走看看