原文地址:https://www.yanbinghu.com/2018/12/22/40915.html
前言
给定一个最多包含40亿个随机排列的32位的顺序整数的顺序文件,找出一个不在文件中的32位整数。(在文件中至少确实一个这样的数-为什么?)。在具有足够内存的情况下,如何解决该问题?如果有几个外部的“临时”文件可用,但是仅有几百字节的内存,又该如何解决该问题?
分析
这仍然是《编程珠玑》中的一个问题。前面我们曾经提到过《位图法》,我们使用位图法解决了这个问题。32位整型最多有4294967296个整数,而很显然40亿个数中必然会至少缺一个。我们同样也可以尝试使用位图法解决该问题,使用536 870 912个字节,约512M内存存储这40亿整数,存在该整数的位置1,最后遍历比特位,输出第一个比特位为0的位置即可。那如果仅借助几个“临时”文件,使用几百字节的内存的情况下该如何处理呢?
能否使用二分搜索呢?这40亿个整数是随机排列的,因此普通的二分搜索不能找到那个不存在的数。但是我们可以基于二分搜索的思想。
一个整数有32位,我们按照每个比特位是0还是1,将要查找的数据范围一分为二。从最高比特位开始:
- 将最高比特位为0的放在一堆,为1的放在另外一堆
- 如果一样多,则随意选择一堆,例如选0,则该位为0
- 如果不一样多,选择少的一堆继续,如1更少,则该位为1
这里需要做一些解释:
- 由于2^32个整数中,每一个比特位是1还是0的个数是相同的。如果在这40亿个整数中,某比特位为1和0的个数是相同的,则说明两边都有不存在的数。因此选择任意一堆即可。
- 如果比特位1的整数比0的整数多,则说明,比特位为0的一堆数中,肯定缺少了一些数。而比特位为1的一堆数中,可能缺少一些数。因此,我们选择少的,也就是比特位为0的那一堆数。
- 每一次选择,都记录选择的是0还是1,最多32次选择后,便可以至少找到一个整数,不存在这40亿数中。
实例说明
由于32位的整型数据量太多,不便说明,我们用一个4比特的数据对上面的思路再做一个说明。4比特最多有16个数。
假设有以下源数据:
3 5 2 6 7 -1 -4 -6 -3 1 -5
对应二进制形式如下(负数在内存中以补码形式存储):
0011 0101 0010 0110 0111 1111 1100 1010 1101 0001 1011
1.处理第1比特位被分为两部分数据,分别为:
- 比特位为0的
0011 0101 0010 0110 0111 0001
- 比特位为1的
1111 1100 1010 1101 1011
可以看到,第一比特位为1的数为5个,比比特位为0的数要少,因此选择比特位为1的数,继续处理。且第一比特位,获得1.
3.处理第2比特位仍然分为两部分数据,分别为:
- 比特位为0的
1010 1011
- 比特位为1的
1111 1100 1101
可以看到,第一比特位为1的数为3个,比比特位为0的数要多,因此选择比特位为0的数,继续处理。且第二比特位,获得0。
2.处理第3比特位仍然被分为两部分数据,分别为:
- 比特位为0的
无
- 比特位为1的
1010 1011
明显看到第三比特位为0的数没有,因此选择比特位0,获得0。至此,已经没有必要继续查找了。
我们最终得到了前三个比特位100,因此不存在于这些数中至少有1000,1001,即-8,-7。
代码实现
C语言实现:
//binarySearch.c
#include <stdio.h>
#include <stdlib.h>
#define MAX_STR 10
#define SOURCE_FILE "source.txt" //最原始文件,需要保留
#define SRC_FILE "src.txt" //需要分类的文件
#define BIT_1_FILE "bit1.txt"
#define BIT_0_FILE "bit0.txt"
#define INT_BIT_NUM 32
/*
FILE *src 源数据文件指针
FILE *fpBit1 存储要处理的比特位为1的数据
FILE *fpBit0 存储要处理的比特位为0的数据
int bit 要处理的比特位
返回值
0:选择比特位为0的数据继续处理
1:选择比特位为1的数据继续处理
-1:出错
*/
int splitByBit(FILE *src,FILE *fpBit1,FILE *fpBit0,int bit,int *nums)
{
/*入参检查*/
if(NULL == src || NULL == fpBit1 || NULL == fpBit0 || NULL == nums)
{
printf("input para is NULL");
return -1;
}
/*bit位检查*/
if(bit < 0 || bit > INT_BIT_NUM )
{
printf("the bit is wrong");
return -1;
}
char string[MAX_STR] = {0};
int mask = 1<< bit;
int bit0num = 0;
int bit1num = 0;
int num = 0;
//printf("mask is %x
",mask);
/*循环读取源数据*/
while(fgets(string, MAX_STR, src ) != NULL)
{
num = atoi(string);
//printf("%d&%d %d
",num,mask, num&mask);
/*根据比特位的值,将数据写到不同的位置,注意优先级问题*/
if(0 == (num&mask))
{
//printf("bit 0 %d
",num);
fprintf(fpBit0, "%d
", num);
bit0num++;
}
else
{
//printf("bit 1 %d
",num);
fprintf(fpBit1, "%d
", num);
bit1num++;
}
}
//printf("bit0num:%d,bit1num:%d
",bit0num,bit1num);
if(bit0num > bit1num)
{
/*说明比特位为1的数少*/
*nums = bit1num;
return 1;
}
else
{
*nums = bit0num;
return 0;
}
}
/***
*关闭所有文件描述符
*
* **/
void closeAllFile(FILE **src,FILE **bit0,FILE **bit1)
{
if(NULL != src && NULL != *src)
{
fclose(*src);
*src = NULL;
}
if(NULL != bit1 && NULL != *bit1)
{
fclose(*bit1);
*bit1 = NULL;
}
if(NULL != bit0 && NULL != *bit0)
{
fclose(*bit0);
*bit0 = NULL;
}
}
int findNum(int *findNum)
{
int loop = 0;
/*打开最原始文件*/
FILE *src = fopen(SOURCE_FILE,"r");
if(NULL == src)
{
printf("failed to open %s",SOURCE_FILE);
return -1;
}
FILE *bit1 = NULL;
FILE *bit0 = NULL;
int num = 0;
int bitNums = 0; //得到比特位的数字数量
int findBit = 0; //当前得到的比特位
for(loop = 0; loop < INT_BIT_NUM;loop++)
{
/*第一次循环不会打开,保留源文件*/
if(NULL == src)
{
src = fopen(SRC_FILE,"r");
}
if(NULL == src)
{
return -1;
}
/**打开失败时,注意关闭所有打开的文件描述符**/
bit1 = fopen(BIT_1_FILE,"w+");
if(NULL == bit1)
{
closeAllFile(&src,&bit1,&bit0);
printf("failed to open %s",BIT_1_FILE);
return -1;
}
bit0 = fopen(BIT_0_FILE,"w+");
if(NULL == bit0)
{
closeAllFile(&src,&bit1,&bit0);
printf("failed to open %s",BIT_0_FILE);
return -1;
}
findBit = splitByBit(src,bit1,bit0,loop,&bitNums);
if(-1 == findBit)
{
printf("process error
");
closeAllFile(&src,&bit1,&bit0);
return -1;
}
closeAllFile(&src,&bit1,&bit0);
//printf("find bit %d
",findBit);
/*将某比特位数量少的文件重命名为新的src.txt,以便进行下一次处理*/
if(1 == findBit)
{
rename(BIT_1_FILE,SRC_FILE);
num |= (1 << loop);
printf("mv bit1 file to src file
");
}
else
{
printf("mv bit0 file to src file
");
rename(BIT_0_FILE,SRC_FILE);
}
/*如果某个文件数量为0,则没有必要继续寻找下去*/
if(0 == bitNums)
{
printf("no need to continue
");
break;
}
}
*findNum = num;
return 0;
}
int main()
{
int num = 0;
findNum(&num);
printf("final num is %d or 0x%x
",num,num);
return 0;
}
代码说明:
- 这里的splitByBit函数根据比特位将数据分为两部分
- closeAllFile用于关闭文件描述符
- findNum函数循环32个比特位,每处理一次得到一个比特位,最终可以得到不存在其中的整数。
利用脚本产生了约2000万个整数:
wc -l source.txt
20000001 source.txt
编译运行:
$ gcc -o binarySearch binarySearch.c
$ time ./binarySearch
final num is 18950401 or 0x1212901
real 0m8.001s
user 0m6.466s
sys 0m0.445s
程序的主要时间花在了读写文件,且占用内存极小。
总结
本文从一个特别的角度用最常见的二分搜索解决了该问题,最多拆分32次,便可从中找到不存在的整数。你有什么更好的思路或优化点,欢迎留言。
微信公众号【编程珠玑】:专注但不限于分享计算机编程基础,Linux,C语言,C++,Python,数据库等编程相关[原创]技术文章,号内包含大量经典电子书和视频学习资源。欢迎一起交流学习,一起修炼计算机“内功”,知其然,更知其所以然。