zoukankan      html  css  js  c++  java
  • poj-2516.minimum cost(k次费用流)

    Minimum Cost

    Time Limit: 4000MS   Memory Limit: 65536K
    Total Submissions: 19883   Accepted: 7055

    Description

    Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport. 

    It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

    Input

    The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place. 

    Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper. 

    The input is terminated with three "0"s. This test case should not be processed.

    Output

    For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

    Sample Input

    1 3 3   
    1 1 1
    0 1 1
    1 2 2
    1 0 1
    1 2 3
    1 1 1
    2 1 1
    
    1 1 1
    3
    2
    20
    
    0 0 0
    

    Sample Output

    4
    -1
    

    Source

    都在代码里了,不不建议抄袭代码,代码里有些调试代码,有需要的可以看代码之前注释,前面是解释,精髓在最后三行。

      1 /*
      2     本题心得:一开始做题就有种感觉需要对商品拆点,然后满足每个商人,但是这样的话每个商品要拆为n个点,必然会有很大的空间浪费造成tle,
      3     实在没思路之后看了博客,看到说每种商品都是独立的,意思就是把商人需要的每种物品都单独买,然后统计最后结果就行了,这里有一个细节就是,
      4     因为目的是满足所有商人情况下的最小费用,那也就是最小费用最大流,所以我们事先判断某种商品是否够用,如果够用,那么最大流一定是满载的,
      5     所以不必担心找不到最大流,就找最小花费就行了。
      6     对于每个商品,我们记得要清空head数组,额贼,这个把我坑了好久,后来想如果不清空必然会在spfa中造成无限循环(想想为什么?),所以对每件
      7     商品都需要init,对于每件商品,我们建立超级源点指向那些供应商,容量为最大供应数目花费为0,对于每个商人,我们建立一条边指向超级汇点,容量为商人
      8     对这件商品的需求数目(限制每个商人得到的物品数),花费为0,对于每个供应商和他的商人之间建立一条由供应商指向商人的边,cap为inf(由于前面我们已经限制了每个供应商可以提供的物品)
      9     花费为这个供应商对这个商人供应这件物品的cost,跑一波费用流就ojk了。
     10     这样我们就
     11         通过供应商 -> 商人 限制了价格 
     12         通过 s -> 供应商 限制了供应个数
     13         通过商人 -> t 限制了商人的需求数目。
     14 */
     15 #include <cstdio>
     16 #include <cstring>
     17 #include <algorithm>
     18 #include <queue>
     19 using namespace std;
     20 
     21 const int maxn = 50 + 5, maxm = 1e4 + 5, inf = 0x3f3f3f3f;
     22 int want[maxn][maxn], supply[maxn][maxn], sumwant[maxn], sumsupply[maxn], costij[maxn][maxn][maxn];
     23 struct Edge {
     24     int to, next, cap, flow, cost, from;
     25 } edge[maxm];
     26 int head[maxn << 1], tot;
     27 int pre[maxn << 1], dis[maxn << 1];
     28 bool vis[maxn << 1];
     29 
     30 int N;
     31 
     32 void init(int n) {
     33     N = n;
     34     tot = 0;
     35     memset(head, -1, sizeof head);
     36 }
     37 
     38 void addedge(int u, int v, int cap, int cost) {
     39     edge[tot].to = v; edge[tot].cap = cap; edge[tot].cost = cost; edge[tot].flow = 0; edge[tot].from = u;
     40     edge[tot].next = head[u]; head[u] = tot ++;
     41     edge[tot].to = u; edge[tot].cap = 0; edge[tot].cost = -cost; edge[tot].flow = 0; edge[tot].from = v;
     42     edge[tot].next = head[v]; head[v] = tot ++;
     43 }
     44 
     45 bool spfa(int s, int t) {
     46     queue <int> que;
     47     // memset(dis, inf, sizeof dis);
     48     // memset(vis, false, sizeof vis);
     49     // memset(pre, -1, sizeof pre);
     50     for(int i = 0; i <= N; i ++) {
     51         dis[i] = inf;
     52         vis[i] = false;
     53         pre[i] = -1;
     54     }
     55     dis[s] = 0;
     56     vis[s] = true;
     57     que.push(s);
     58     while(!que.empty()) {
     59         // printf("in bfs");
     60         int u = que.front();
     61         que.pop();
     62         vis[u] = false;
     63         for(int i = head[u]; ~i; i = edge[i].next) {
     64             int v = edge[i].to;
     65             if(edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost) {
     66                 dis[v] = dis[u] + edge[i].cost;
     67                 pre[v] = i;
     68                 if(!vis[v]) {
     69                     vis[v] = true;
     70                     // printf("now in push of bfs");
     71                     que.push(v);
     72                 }
     73             }
     74         }
     75     }
     76     return ~pre[t];
     77     // if(pre[t] == -1) return false;
     78     // else return true;
     79 }
     80 
     81 int mincostmaxflow(int s, int t) {
     82     int cost = 0;
     83     while(spfa(s, t)) {
     84         // printf("spfa is true");
     85         int Min = inf;
     86         for(int i = pre[t]; ~i; i = pre[edge[i ^ 1].to]) {
     87             if(Min > edge[i].cap - edge[i].flow)
     88                 Min = edge[i].cap - edge[i].flow;
     89             // printf("now is find min");
     90         }
     91         for(int i = pre[t]; ~i; i = pre[edge[i ^ 1].to]) {
     92             edge[i].flow += Min;
     93             edge[i ^ 1].flow -= Min;
     94             cost += edge[i].cost * Min;
     95             // printf("now is update");
     96         }
     97     }
     98     return cost;
     99 }
    100 
    101 int main() {
    102     int n, m, k;
    103     while(~scanf("%d %d %d", &n, &m, &k) && (n | m | k)) {
    104 
    105         memset(want, 0, sizeof want);
    106         memset(supply, 0, sizeof supply);
    107         memset(sumwant, 0, sizeof sumwant);
    108         memset(sumsupply, 0, sizeof sumsupply);
    109         for(int i = 1; i <= n; i ++) {
    110             for(int j = 1; j <= k; j ++) {
    111                 scanf("%d", &want[i][j]);
    112                 sumwant[j] += want[i][j];
    113             }
    114         }
    115         for(int i = 1; i <= m; i ++) {
    116             for(int j = 1; j <= k; j ++) {
    117                 scanf("%d", &supply[i][j]);
    118                 sumsupply[j] += supply[i][j];
    119             }
    120         }
    121         bool flag = true;
    122         for(int i = 1; i <= k; i ++) {
    123             if(sumwant[i] > sumsupply[i]) {
    124                 flag = false;
    125                 break;
    126             }
    127         }
    128         for(int q = 1; q <= k; q ++) {
    129             for(int i = 1; i <= n; i ++) {
    130                 for(int j = 1; j <= m; j ++) {
    131                     scanf("%d", &costij[q][i][j]);//第q件物品,第i个人从第j个供应商的花费
    132                 }
    133             }
    134         }
    135         int s = 0, t = m + n + 1, mcmf = 0;
    136         if(flag) {
    137             for(int q = 1; q <= k; q ++) {
    138                 init(n + m + 2);
    139                 // printf("***************
    ");
    140                 for(int i = 1; i <= m; i ++) {
    141                     addedge(s, i, supply[i][q], 0);
    142                 }
    143                 for(int i = 1; i <= n; i ++) {
    144                     addedge(i + m, t, want[i][q], 0);
    145                 }
    146                 for(int i = 1; i <= n; i ++) {
    147                     for(int j = 1; j <= m; j ++) {
    148                         addedge(j, i + m, inf, costij[q][i][j]);
    149                     }
    150                 }
    151                 // for(int i = 0; i < tot; i ++) {
    152                 //     printf("%d -> %d
    ", edge[i].from, edge[i].to);
    153                 // }
    154                 mcmf += mincostmaxflow(s, t);
    155             }
    156             printf("%d
    ", mcmf);
    157         } else printf("-1
    ");
    158     }
    159     return 0;
    160 }
  • 相关阅读:
    8皇后问题
    初级8皇后问题
    某个集合的子集问题
    n全排列输出和 n个数的组合(数字范围a~b)
    (转)李明博:我的12年等于24年 快速提升的秘诀是什么 别人以为我早起是先天的,事实靠的是努力 训练,除了反复的努力之外没有什么别的秘诀 像企业主一样去思考,一样查找问题,一同去解决它,并且还要制定出比企业主要求更高的目标。李明博像我一样,不,他比我更把公司当成自己的
    (转)当别人努力的时候,你在做什么? 评论事情的一种态度 当你在抱怨的时候,为什么不想想我做了什么? 把简单的原则坚持贯彻下去 消极的心态,养成了惯性的思维,一切都是不好的。 也许这就是人性的弱点,不经意的习惯,却逐渐腐蚀了你的人生。
    对于保险的看法和如何拒绝保险推销 保险应该主要是有2个主要作用: 1. 分担风险 2. 投资 保险的常用推销方法和该保险的卖点 拒绝保险的方法
    业务、架构、技术,我们应该关注什么 Java和.Net的优势劣势简单看法 市场经济决定,商业之道即是软件之道,市场的需求决定着软件技术的发展 利益决定着选择应用新技术
    我的学习工作经历,一个园林专业中专毕业生的IT之路 学习编程 创业
    “医疗信息化行业之中的联发科”- 我们在医疗行业中的定位及目标 想做一个面对中小企业的专业上游软件供应商 台湾联发科技颠覆掉的是一个封闭的手机产业系统 解决方案,即AgileHIS.NET数字化医院基础方案
  • 原文地址:https://www.cnblogs.com/bianjunting/p/11399210.html
Copyright © 2011-2022 走看看