zoukankan      html  css  js  c++  java
  • 自定义Hive Sql Job分析工具

    前言

    我们都知道,在大数据领域,Hive的出现帮我降低了许多使用Hadoop书写方式的学习成本.使用用户可以使用类似Sql的语法规则写明查询语句,从hive表数据中查询目标数据.最为重要的是这些sql语句会最终转化为map reduce作业进行处理.这也是Hive最强大的地方.可以简单的理解为Hive就是依托在Hadoop上的1个壳.但是这里有一点点小小的不同,不是每段hive查询sql语句与最后生成的job一一对应,如果你的这段sql是一个大sql,他在转化掉之后,会衍生出许多小job,这些小job是独立存在运行的,以不同的job名称进行区别,但是也会保留公共的job名称.所以一个问题来了,对于超级长的hive sql语句,我想查看到底是哪段子sql花费了我大量的执行时间,在JobHistory上只有每个子Job的运行时间,没有子Job对应的sql语句,一旦这个功能有了之后,就会帮助我们迅速的定位到问题所在.


    Hive子Job中的Sql

    OK,带着上述的目标,我们要想分析出到底哪段子sql所衍生的job运行时间更长,就要先知道这些sql到底在存在与哪里.在前面的描述中,已经提到了,Hive是依托于Hadoop,自然Hive提交的job信息也是保存在Hadoop的HDFS上的.在联想一下JobHistory中的各个文件类型.你应该会发现带有下面后缀的文件存在.


    我们发现里面包含了之前分析过的.jhist文件,还有带conf字符的.xml格式文件,从文件名上来看就是job提交时的一些配置信息,然后我们用vim命令查阅conf.xml后缀的文件,看看里面是不是有我们想要的hive qury string 这样的属性


    OK,目标算是找到了,这的确就是我们想要的属性.说明这样的信息的确是存在的,后面的操作就是怎么去解析这段有用的信息了.


    程序工具分析Hive Sql Job

    知道了目标数据源,我们能想到的最简单快速的方法就是逐行解析文件,做做文本匹配,筛选关键信息.这些代码谁都会写,首先要传入一个HDFS目录地址,这个是在JobHistory的存储目录上加上一个具体日期目录,这段解析程序在文章的末尾会加上.下面列举在调试分析程序时遇到的一些问题,这个还是比较有用的.

    1.hive sql中的中文导致解析出现乱码

    这个又是非常讨厌的java解析出现乱码的原因,因为考虑到sql中存在中文注释,而Hadoop在存中文的时候都是用utf8的编码方式,所以读出文件数据后进行一次转utf-8编码方式的处理,就是下面所示代码.

    ...
    fileSystem = path.getFileSystem(new Configuration());
    			in = fileSystem.open(path);
    			InputStreamReader isr;
    			BufferedReader br;
    
    			isr = new InputStreamReader(in, "UTF-8");
    			br = new BufferedReader(isr);
    
    			while ((str = br.readLine()) != null) {
    ...

    2.单线程解析文件速度过慢

    之前在测试环境中做文件解析看不出真实效果,文件一下解析就OK了,但是到真实环境中,多达几万个job文件,程序马上就吃不消了,算上解析文件,再把结果写入mysql,耗时达到60多分钟,后面改成了多线程的方式,后来开到10个线程去跑,速度才快了许多.


    3.结果数据写入MySql过慢

    后来处理速度是上去了,但是写入sql速度过慢,比如说,我有一次测试,开10个线程区解析,花了8分钟就解析好了几万个文件数据,但是插入数据库花了20分钟左右,而且量也就几万条语句.后来改成了批处理的方式,效果并没有什么大的改变,这个慢的问题具体并没有被解决掉,怀疑可能是因有些语句中存在超长的hive sql语句导致的.


    下面是程序的主要分析代码,分为工具类代码,和解析线程类,代码全部链接再此处:https://github.com/linyiqun/yarn-jobhistory-crawler/tree/master/jobHiveSqlAnalyse

    主工具代码

    package org.apache.hadoop.mapreduce.v2.hs.tool.sqlanalyse;
    
    import java.io.BufferedReader;
    import java.io.FileNotFoundException;
    import java.io.IOException;
    import java.io.InputStream;
    import java.io.InputStreamReader;
    import java.io.PrintStream;
    import java.util.ArrayList;
    import java.util.HashMap;
    import java.util.LinkedList;
    import java.util.List;
    import java.util.Map.Entry;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileContext;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.RemoteIterator;
    import org.apache.hadoop.fs.UnsupportedFileSystemException;
    import org.apache.hadoop.io.IOUtils;
    
    public class HiveSqlAnalyseTool {
    	private int threadNum;
    	private String dirType;
    	private String jobHistoryPath;
    
    	private FileContext doneDirFc;
    	private Path doneDirPrefixPath;
    
    	private LinkedList<FileStatus> fileStatusList;
    	private HashMap<String, String[]> dataInfos;
    	private DbClient dbClient;
    
    	public HiveSqlAnalyseTool(String dirType, String jobHistoryPath,
    			int threadNum) {
    		this.threadNum = threadNum;
    		this.dirType = dirType;
    		this.jobHistoryPath = jobHistoryPath;
    
    		this.dataInfos = new HashMap<String, String[]>();
    		this.fileStatusList = new LinkedList<FileStatus>();
    		this.dbClient = new DbClient(BaseValues.DB_URL,
    				BaseValues.DB_USER_NAME, BaseValues.DB_PASSWORD,
    				BaseValues.DB_HIVE_SQL_STAT_TABLE_NAME);
    
    		try {
    			doneDirPrefixPath = FileContext.getFileContext(new Configuration())
    					.makeQualified(new Path(this.jobHistoryPath));
    			doneDirFc = FileContext.getFileContext(doneDirPrefixPath.toUri());
    		} catch (UnsupportedFileSystemException e) {
    			// TODO Auto-generated catch block
    			e.printStackTrace();
    		} catch (IllegalArgumentException e) {
    			// TODO Auto-generated catch block
    			e.printStackTrace();
    		}
    	}
    
    	public void readJobInfoFiles() {
    		List<FileStatus> files;
    
    		files = new ArrayList<FileStatus>();
    		try {
    			files = scanDirectory(doneDirPrefixPath, doneDirFc, files);
    		} catch (IOException e) {
    			// TODO Auto-generated catch block
    			e.printStackTrace();
    		}
    
    		if (files != null) {
    			for (FileStatus fs : files) {
    				// parseFileInfo(fs);
    			}
    			System.out.println("files num is " + files.size());
    			System.out
    					.println("fileStatusList size is" + fileStatusList.size());
    
    			ParseThread[] threads;
    			threads = new ParseThread[threadNum];
    			for (int i = 0; i < threadNum; i++) {
    				System.out.println("thread " + i + "start run");
    				threads[i] = new ParseThread(this, fileStatusList, dataInfos);
    				threads[i].start();
    			}
    
    			for (int i = 0; i < threadNum; i++) {
    				System.out.println("thread " + i + "join run");
    				try {
    					if (threads[i] != null) {
    						threads[i].join();
    					}
    				} catch (InterruptedException e) {
    					// TODO Auto-generated catch block
    					e.printStackTrace();
    				}
    			}
    		} else {
    			System.out.println("files is null");
    		}
    
    		printStatDatas();
    	}
    
    	protected List<FileStatus> scanDirectory(Path path, FileContext fc,
    			List<FileStatus> jhStatusList) throws IOException {
    		path = fc.makeQualified(path);
    		System.out.println("dir path is " + path.getName());
    		try {
    			RemoteIterator<FileStatus> fileStatusIter = fc.listStatus(path);
    			while (fileStatusIter.hasNext()) {
    				FileStatus fileStatus = fileStatusIter.next();
    				Path filePath = fileStatus.getPath();
    
    				if (fileStatus.isFile()) {
    					jhStatusList.add(fileStatus);
    					fileStatusList.add(fileStatus);
    				} else if (fileStatus.isDirectory()) {
    					scanDirectory(filePath, fc, jhStatusList);
    				}
    			}
    		} catch (FileNotFoundException fe) {
    			System.out.println("Error while scanning directory " + path);
    		}
    
    		return jhStatusList;
    	}
    
    	private void parseFileInfo(FileStatus fs) {
    		String resultStr;
    		String str;
    		String username;
    		String fileType;
    		String jobId;
    		String jobName;
    		String hiveSql;
    
    		int startPos;
    		int endPos;
    		int hiveSqlFlag;
    		long launchTime;
    		long finishTime;
    		int mapTaskNum;
    		int reduceTaskNum;
    		String xmlNameFlag;
    		String launchTimeFlag;
    		String finishTimeFlag;
    		String launchMapFlag;
    		String launchReduceFlag;
    
    		Path path;
    		FileSystem fileSystem;
    		InputStream in;
    
    		resultStr = "";
    		fileType = "";
    		hiveSql = "";
    		jobId = "";
    		jobName = "";
    		username = "";
    		hiveSqlFlag = 0;
    		launchTime = 0;
    		finishTime = 0;
    		mapTaskNum = 0;
    		reduceTaskNum = 0;
    		xmlNameFlag = "<value>";
    		launchTimeFlag = ""launchTime":";
    		finishTimeFlag = ""finishTime":";
    		launchMapFlag = ""Launched map tasks"";
    		launchReduceFlag = ""Launched reduce tasks"";
    
    		path = fs.getPath();
    		str = path.getName();
    		if (str.endsWith(".xml")) {
    			fileType = "config";
    
    			endPos = str.lastIndexOf("_");
    			jobId = str.substring(0, endPos);
    		} else if (str.endsWith(".jhist")) {
    			fileType = "info";
    
    			endPos = str.indexOf("-");
    			jobId = str.substring(0, endPos);
    		} else {
    			return;
    		}
    
    		try {
    			fileSystem = path.getFileSystem(new Configuration());
    			in = fileSystem.open(path);
    			InputStreamReader isr;
    			BufferedReader br;
    
    			isr = new InputStreamReader(in, "UTF-8");
    			br = new BufferedReader(isr);
    
    			while ((str = br.readLine()) != null) {
    				if (str.contains("mapreduce.job.user.name")) {
    					startPos = str.indexOf(xmlNameFlag);
    					endPos = str.indexOf("</value>");
    					username = str.substring(startPos + xmlNameFlag.length(),
    							endPos);
    				} else if (str.contains("mapreduce.job.name")) {
    					startPos = str.indexOf(xmlNameFlag);
    					endPos = str.indexOf("</value>");
    					jobName = str.substring(startPos + xmlNameFlag.length(),
    							endPos);
    				} else if (str.contains("hive.query.string")) {
    					hiveSqlFlag = 1;
    					hiveSql = str;
    				} else if (hiveSqlFlag == 1) {
    					hiveSql += str;
    
    					if (str.contains("</value>")) {
    						startPos = hiveSql.indexOf(xmlNameFlag);
    						endPos = hiveSql.indexOf("</value>");
    						hiveSql = hiveSql.substring(
    								startPos + xmlNameFlag.length(), endPos);
    
    						hiveSqlFlag = 0;
    					}
    				} else if (str.startsWith("{"type":"JOB_INITED"")) {
    					startPos = str.indexOf(launchTimeFlag);
    					str = str.substring(startPos + launchTimeFlag.length());
    					endPos = str.indexOf(",");
    					launchTime = Long.parseLong(str.substring(0, endPos));
    				} else if (str.startsWith("{"type":"JOB_FINISHED"")) {
    					mapTaskNum = parseTaskNum(launchMapFlag, str);
    					reduceTaskNum = parseTaskNum(launchReduceFlag, str);
    
    					startPos = str.indexOf(finishTimeFlag);
    					str = str.substring(startPos + finishTimeFlag.length());
    					endPos = str.indexOf(",");
    					finishTime = Long.parseLong(str.substring(0, endPos));
    				}
    			}
    
    			System.out.println("jobId is " + jobId);
    			System.out.println("jobName is " + jobName);
    			System.out.println("username is " + username);
    			System.out.println("map task num is " + mapTaskNum);
    			System.out.println("reduce task num is " + reduceTaskNum);
    			System.out.println("launchTime is " + launchTime);
    			System.out.println("finishTime is " + finishTime);
    			System.out.println("hive query sql is " + hiveSql);
    		} catch (IOException e) {
    			// TODO Auto-generated catch block
    			e.printStackTrace();
    		}
    
    		if (fileType.equals("config")) {
    			insertConfParseData(jobId, jobName, username, hiveSql);
    		} else if (fileType.equals("info")) {
    			insertJobInfoParseData(jobId, launchTime, finishTime, mapTaskNum,
    					reduceTaskNum);
    		}
    	}
    
    	private void insertConfParseData(String jobId, String jobName,
    			String username, String sql) {
    		String[] array;
    
    		if (dataInfos.containsKey(jobId)) {
    			array = dataInfos.get(jobId);
    		} else {
    			array = new String[BaseValues.DB_COLUMN_HIVE_SQL_LEN];
    		}
    
    		array[BaseValues.DB_COLUMN_HIVE_SQL_JOBID] = jobId;
    		array[BaseValues.DB_COLUMN_HIVE_SQL_JOBNAME] = jobName;
    		array[BaseValues.DB_COLUMN_HIVE_SQL_USERNAME] = username;
    		array[BaseValues.DB_COLUMN_HIVE_SQL_HIVE_SQL] = sql;
    
    		dataInfos.put(jobId, array);
    	}
    
    	private void insertJobInfoParseData(String jobId, long launchTime,
    			long finishedTime, int mapTaskNum, int reduceTaskNum) {
    		String[] array;
    
    		if (dataInfos.containsKey(jobId)) {
    			array = dataInfos.get(jobId);
    		} else {
    			array = new String[BaseValues.DB_COLUMN_HIVE_SQL_LEN];
    		}
    
    		array[BaseValues.DB_COLUMN_HIVE_SQL_JOBID] = jobId;
    		array[BaseValues.DB_COLUMN_HIVE_SQL_START_TIME] = String
    				.valueOf(launchTime);
    		array[BaseValues.DB_COLUMN_HIVE_SQL_FINISH_TIME] = String
    				.valueOf(finishedTime);
    		array[BaseValues.DB_COLUMN_HIVE_SQL_MAP_TASK_NUM] = String
    				.valueOf(mapTaskNum);
    		array[BaseValues.DB_COLUMN_HIVE_SQL_REDUCE_TASK_NUM] = String
    				.valueOf(reduceTaskNum);
    
    		dataInfos.put(jobId, array);
    	}
    
    	private int parseTaskNum(String flag, String jobStr) {
    		int taskNum;
    		int startPos;
    		int endPos;
    
    		String tmpStr;
    
    		taskNum = 0;
    		tmpStr = jobStr;
    		startPos = tmpStr.indexOf(flag);
    
    		if (startPos == -1) {
    			return 0;
    		}
    
    		tmpStr = tmpStr.substring(startPos + flag.length());
    		endPos = tmpStr.indexOf("}");
    		tmpStr = tmpStr.substring(0, endPos);
    		taskNum = Integer.parseInt(tmpStr.split(":")[1]);
    
    		return taskNum;
    	}
    
    	private void printStatDatas() {
    		String jobId;
    		String jobInfo;
    		String[] infos;
    
    		if (dbClient != null) {
    			dbClient.createConnection();
    		}
    
    		if (dataInfos != null) {
    			System.out.println("map data size is" + dataInfos.size());
    			
    			if (dbClient != null && dirType.equals("dateTimeDir")) {
    				dbClient.insertDataBatch(dataInfos);
    			}
    		}
    
    		/*for (Entry<String, String[]> entry : this.dataInfos.entrySet()) {
    			jobId = entry.getKey();
    			infos = entry.getValue();
    
    			jobInfo = String
    					.format("jobId is %s, jobName:%s, usrname:%s, launchTime:%s, finishTime:%s, mapTaskNum:%s, reduceTaskNum:%s, querySql:%s",
    							jobId, infos[1], infos[2], infos[3], infos[4],
    							infos[5], infos[6], infos[7]);
    			// System.out.println("job detail info " + jobInfo);
    
    			if (dbClient != null && dirType.equals("dateTimeDir")) {
    				dbClient.insertHiveSqlStatData(infos);
    			}
    		}*/
    
    		if (dbClient != null) {
    			dbClient.closeConnection();
    		}
    	}
    
    	public synchronized FileStatus getOneFile() {
    		FileStatus fs;
    
    		fs = null;
    		if (fileStatusList != null & fileStatusList.size() > 0) {
    			fs = fileStatusList.poll();
    		}
    
    		return fs;
    	}
    
    	public synchronized void addDataToMap(String jobId, String[] values) {
    		if (dataInfos != null) {
    			dataInfos.put(jobId, values);
    		}
    	}
    }
    

    解析线程代码ParseThread.java:

    package org.apache.hadoop.mapreduce.v2.hs.tool.sqlanalyse;
    
    import java.io.BufferedReader;
    import java.io.IOException;
    import java.io.InputStream;
    import java.io.InputStreamReader;
    import java.util.HashMap;
    import java.util.LinkedList;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    
    public class ParseThread extends Thread{
    	private HiveSqlAnalyseTool tool;
    	private LinkedList<FileStatus> fileStatus;
    	private HashMap<String, String[]> dataInfos;
    	
    	public ParseThread(HiveSqlAnalyseTool tool, LinkedList<FileStatus> fileStatus, HashMap<String, String[]> dataInfos){
    		this.tool = tool;
    		this.fileStatus = fileStatus;
    		this.dataInfos = dataInfos;
    	}
    	
    	@Override
    	public void run() {
    		FileStatus fs;
    		
    		while(fileStatus != null && !fileStatus.isEmpty()){
    			fs = tool.getOneFile();
    			parseFileInfo(fs);
    		}
    		
    		super.run();
    	}
    
    	private void parseFileInfo(FileStatus fs) {
    		String str;
    		String username;
    		String fileType;
    		String jobId;
    		String jobName;
    		String hiveSql;
    
    		int startPos;
    		int endPos;
    		int hiveSqlFlag;
    		long launchTime;
    		long finishTime;
    		int mapTaskNum;
    		int reduceTaskNum;
    		String xmlNameFlag;
    		String launchTimeFlag;
    		String finishTimeFlag;
    		String launchMapFlag;
    		String launchReduceFlag;
    
    		Path path;
    		FileSystem fileSystem;
    		InputStream in;
    
    		fileType = "";
    		hiveSql = "";
    		jobId = "";
    		jobName = "";
    		username = "";
    		hiveSqlFlag = 0;
    		launchTime = 0;
    		finishTime = 0;
    		mapTaskNum = 0;
    		reduceTaskNum = 0;
    		xmlNameFlag = "<value>";
    		launchTimeFlag = ""launchTime":";
    		finishTimeFlag = ""finishTime":";
    		launchMapFlag = ""Launched map tasks"";
    		launchReduceFlag = ""Launched reduce tasks"";
    
    		path = fs.getPath();
    		str = path.getName();
    		if (str.endsWith(".xml")) {
    			fileType = "config";
    
    			endPos = str.lastIndexOf("_");
    			jobId = str.substring(0, endPos);
    		} else if (str.endsWith(".jhist")) {
    			fileType = "info";
    
    			endPos = str.indexOf("-");
    			jobId = str.substring(0, endPos);
    		}else{
    			return;
    		}
    
    		try {
    			fileSystem = path.getFileSystem(new Configuration());
    			in = fileSystem.open(path);
    			InputStreamReader isr;
    			BufferedReader br;
    
    			isr = new InputStreamReader(in, "UTF-8");
    			br = new BufferedReader(isr);
    
    			while ((str = br.readLine()) != null) {
    				if (str.contains("mapreduce.job.user.name")) {
    					startPos = str.indexOf(xmlNameFlag);
    					endPos = str.indexOf("</value>");
    					username = str.substring(startPos + xmlNameFlag.length(),
    							endPos);
    				} else if (str.contains("mapreduce.job.name")) {
    					startPos = str.indexOf(xmlNameFlag);
    					endPos = str.indexOf("</value>");
    					jobName = str.substring(startPos + xmlNameFlag.length(),
    							endPos);
    				} else if (str.contains("hive.query.string")) {
    					hiveSqlFlag = 1;
    
    					hiveSql = str;
    				} else if (hiveSqlFlag == 1) {
    					hiveSql += str;
    
    					if (str.contains("</value>")) {
    						startPos = hiveSql.indexOf(xmlNameFlag);
    						endPos = hiveSql.indexOf("</value>");
    						hiveSql = hiveSql.substring(
    								startPos + xmlNameFlag.length(), endPos);
    
    						hiveSqlFlag = 0;
    					}
    				} else if (str.startsWith("{"type":"JOB_INITED"")) {
    					startPos = str.indexOf(launchTimeFlag);
    					str = str.substring(startPos + launchTimeFlag.length());
    					endPos = str.indexOf(",");
    					launchTime = Long.parseLong(str.substring(0, endPos));
    				} else if (str.startsWith("{"type":"JOB_FINISHED"")) {
    					mapTaskNum = parseTaskNum(launchMapFlag, str);
    					reduceTaskNum = parseTaskNum(launchReduceFlag, str);
    
    					startPos = str.indexOf(finishTimeFlag);
    					str = str.substring(startPos + finishTimeFlag.length());
    					endPos = str.indexOf(",");
    					finishTime = Long.parseLong(str.substring(0, endPos));
    				}
    			}
    
    			/*System.out.println("jobId is " + jobId);
    			System.out.println("jobName is " + jobName);
    			System.out.println("username is " + username);
    			System.out.println("map task num is " + mapTaskNum);
    			System.out.println("reduce task num is " + reduceTaskNum);
    			System.out.println("launchTime is " + launchTime);
    			System.out.println("finishTime is " + finishTime);
    			System.out.println("hive query sql is " + hiveSql);*/
    		} catch (IOException e) {
    			// TODO Auto-generated catch block
    			e.printStackTrace();
    		}
    
    		if (fileType.equals("config")) {
    			insertConfParseData(jobId, jobName, username, hiveSql);
    		} else if (fileType.equals("info")) {
    			insertJobInfoParseData(jobId, launchTime, finishTime, mapTaskNum,
    					reduceTaskNum);
    		}
    	}
    
    	private void insertConfParseData(String jobId, String jobName,
    			String username, String sql) {
    		String[] array;
    
    		if (dataInfos.containsKey(jobId)) {
    			array = dataInfos.get(jobId);
    		} else {
    			array = new String[BaseValues.DB_COLUMN_HIVE_SQL_LEN];
    		}
    
    		array[BaseValues.DB_COLUMN_HIVE_SQL_JOBID] = jobId;
    		array[BaseValues.DB_COLUMN_HIVE_SQL_JOBNAME] = jobName;
    		array[BaseValues.DB_COLUMN_HIVE_SQL_USERNAME] = username;
    		array[BaseValues.DB_COLUMN_HIVE_SQL_HIVE_SQL] = sql;
    
    		tool.addDataToMap(jobId, array);
    	}
    
    	private void insertJobInfoParseData(String jobId, long launchTime,
    			long finishedTime, int mapTaskNum, int reduceTaskNum) {
    		String[] array;
    
    		if (dataInfos.containsKey(jobId)) {
    			array = dataInfos.get(jobId);
    		} else {
    			array = new String[BaseValues.DB_COLUMN_HIVE_SQL_LEN];
    		}
    
    		array[BaseValues.DB_COLUMN_HIVE_SQL_JOBID] = jobId;
    		array[BaseValues.DB_COLUMN_HIVE_SQL_START_TIME] = String
    				.valueOf(launchTime);
    		array[BaseValues.DB_COLUMN_HIVE_SQL_FINISH_TIME] = String
    				.valueOf(finishedTime);
    		array[BaseValues.DB_COLUMN_HIVE_SQL_MAP_TASK_NUM] = String
    				.valueOf(mapTaskNum);
    		array[BaseValues.DB_COLUMN_HIVE_SQL_REDUCE_TASK_NUM] = String
    				.valueOf(reduceTaskNum);
    
    		tool.addDataToMap(jobId, array);
    	}
    
    	private int parseTaskNum(String flag, String jobStr) {
    		int taskNum;
    		int startPos;
    		int endPos;
    
    		String tmpStr;
    
    		taskNum = 0;
    		tmpStr = jobStr;
    		startPos = tmpStr.indexOf(flag);
    		
    		if(startPos == -1){
    			return 0;
    		}
    		
    		tmpStr = tmpStr.substring(startPos + flag.length());
    		endPos = tmpStr.indexOf("}");
    		tmpStr = tmpStr.substring(0, endPos);
    		taskNum = Integer.parseInt(tmpStr.split(":")[1]);
    
    		return taskNum;
    	}
    }
    


    其他更多Yarn,Hadoop方面代码的分析请点击链接https://github.com/linyiqun/hadoop-yarn,后续将会继续更新YARN其他方面的代码分析。

  • 相关阅读:
    uva 10474 Where is the Marble?(简单题)
    【cocos2d-x 3.7 飞机大战】 决战南海I (二) 我方飞机的实现
    STM32中assert_param的使用
    OC语言--内存管理
    php通过shell调用Hadoop的方法
    前端JSON使用总结
    Google地图接口API之Google地图 API 参考手册(七)
    Google地图接口API之地图类型(六)
    Google地图接口API之地图控件集(五)
    Google地图接口API之地图事件(四)
  • 原文地址:https://www.cnblogs.com/bianqi/p/12183847.html
Copyright © 2011-2022 走看看