zoukankan      html  css  js  c++  java
  • 欧拉定理和费马小定理的证明

    转自博主 https://blog.csdn.net/qq_24451605/article/details/47045279

    在看这篇博客之前推荐看一看我对于欧拉函数的递推公式的证明,方便理解。

    点击打开链接

    ————————————-欧拉定理的内容————————————————————————–

    a和n互质,那么a^phi(n) == 1 ( mod n )

    ————————————欧拉定理的证明—————————————————————————

    设xi为n当中与n互质的数,一共有phi(n)个:

    1)设mi = a * xi , 则mi与n互质

    因为a与n互质,mi也与n互质,所以说这个两个因数当中都没有与n相同的质因子,所以mi也不可能有,所以mi与n必然互质

    2)因为mi与n互质,故mi不能被n整除

    mi = p*n+q*r

    若余数r与n不互质,那么d = gcd ( r , n )!=1 , mi = d*c(c代表一个正整数),那么gcd ( mi , n ) != 1 , 与mi和n互质矛盾!

    故mi%n == ri, ri 均与n互质

    3)若mi == mj ( mod n ) (i!=j)

    mi-mj==a*(xi-xj)(mod n ) == 0 ( mod n )

    xi和xj均是小于n的正整数,故xi==xj时才能成立,则与i!=j矛盾

    故mi%n的余数均不相同,因为mi的个数与n以内与n以内与n互质的数的个数相同,所以ri就是xi的一个不同的排列。

    所以从1~n的mi的乘积与1~n的xi的乘积模n下同余,所以约掉相同的部分,a*a*a*a*……..(phi(n)个)==1(mod n ) , 那么原式得证

    ———————————费马小定理的证明———————————————————————————

    费马小定理其实就是欧拉定理在n是素数时的特例:

    a^phi(n) == 1 ( mod n )

    当n是素数时,phi(n) = n-1

    那么a^(p-1)== 1 ( mod p )

  • 相关阅读:
    盛最多水容器
    罗马数字和整数互相转化
    v-if和v-for
    扫描二维码登录
    使用Promise实现红绿灯交替重复亮
    利用promise实现间隔1s打印1,2,3
    原生js拖拽
    react项目引入使用element-react报错
    php实现类似淘宝最近浏览商品的功能模型代码
    教你如何把php项目打包成EXE文件发布
  • 原文地址:https://www.cnblogs.com/bianzhuo/p/9463290.html
Copyright © 2011-2022 走看看