zoukankan      html  css  js  c++  java
  • 细菌觅食算法-python实现

    BFOIndividual.py

     1 import numpy as np
     2 import ObjFunction
     3 
     4 
     5 class BFOIndividual:
     6 
     7     '''
     8     individual of baterial clony foraging algorithm
     9     '''
    10 
    11     def __init__(self,  vardim, bound):
    12         '''
    13         vardim: dimension of variables
    14         bound: boundaries of variables
    15         '''
    16         self.vardim = vardim
    17         self.bound = bound
    18         self.fitness = 0.
    19         self.trials = 0
    20 
    21     def generate(self):
    22         '''
    23         generate a random chromsome for baterial clony foraging algorithm
    24         '''
    25         len = self.vardim
    26         rnd = np.random.random(size=len)
    27         self.chrom = np.zeros(len)
    28         for i in xrange(0, len):
    29             self.chrom[i] = self.bound[0, i] + 
    30                 (self.bound[1, i] - self.bound[0, i]) * rnd[i]
    31 
    32     def calculateFitness(self):
    33         '''
    34         calculate the fitness of the chromsome
    35         '''
    36         # self.fitness = ObjFunction.GrieFunc(
    37         #     self.vardim, self.chrom, self.bound)
    38         s1 = 0.
    39         s2 = 1.
    40         for i in range(1, self.vardim + 1):
    41             s1 = s1 + self.chrom[i - 1] ** 2
    42             s2 = s2 * np.cos(self.chrom[i - 1] / np.sqrt(i))
    43         y = (1. / 4000.) * s1 - s2 + 1
    44         self.fitness = y

    BFO.py

      1 import numpy as np
      2 from BFOIndividual import BFOIndividual
      3 import random
      4 import copy
      5 import matplotlib.pyplot as plt
      6 import math
      7 
      8 
      9 class BacterialForagingOptimization:
     10 
     11     '''
     12     The class for baterial foraging optimization algorithm
     13     '''
     14 
     15     def __init__(self, sizepop, vardim, bound, params):
     16         '''
     17         sizepop: population sizepop
     18         vardim: dimension of variables
     19         bound: boundaries of variables
     20         param: algorithm required parameters, it is a list which is consisting of [Ned, Nre, Nc, Ns, C, ped, d_attract, w_attract, d_repellant, w_repellant]
     21         '''
     22         self.sizepop = sizepop
     23         self.vardim = vardim
     24         self.bound = bound
     25         self.population = []
     26         self.bestPopulation = []
     27         self.accuFitness = np.zeros(self.sizepop)
     28         self.fitness = np.zeros(self.sizepop)
     29         self.params = params
     30         self.trace = np.zeros(
     31             (self.params[0] * self.params[1] * self.params[2], 2))
     32 
     33     def initialize(self):
     34         '''
     35         initialize the population
     36         '''
     37         for i in xrange(0, self.sizepop):
     38             ind = BFOIndividual(self.vardim, self.bound)
     39             ind.generate()
     40             self.population.append(ind)
     41 
     42     def evaluate(self):
     43         '''
     44         evaluation of the population fitnesses
     45         '''
     46         for i in xrange(0, self.sizepop):
     47             self.population[i].calculateFitness()
     48             self.fitness[i] = self.population[i].fitness
     49 
     50     def sortPopulation(self):
     51         '''
     52         sort population according descending order
     53         '''
     54         sortedIdx = np.argsort(self.accuFitness)
     55         newpop = []
     56         newFitness = np.zeros(self.sizepop)
     57         for i in xrange(0, self.sizepop):
     58             ind = self.population[sortedIdx[i]]
     59             newpop.append(ind)
     60             self.fitness[i] = ind.fitness
     61         self.population = newpop
     62 
     63     def solve(self):
     64         '''
     65         evolution process of baterial clony foraging algorithm
     66         '''
     67         self.t = 0
     68         self.initialize()
     69         self.evaluate()
     70         bestIndex = np.argmin(self.fitness)
     71         self.best = copy.deepcopy(self.population[bestIndex])
     72 
     73         for i in xrange(0, self.params[0]):
     74             for j in xrange(0, self.params[1]):
     75                 for k in xrange(0, self.params[2]):
     76                     self.t += 1
     77                     self.chemotaxls()
     78                     self.evaluate()
     79                     best = np.min(self.fitness)
     80                     bestIndex = np.argmin(self.fitness)
     81                     if best < self.best.fitness:
     82                         self.best = copy.deepcopy(self.population[bestIndex])
     83                     self.avefitness = np.mean(self.fitness)
     84                     self.trace[self.t - 1, 0] = self.best.fitness
     85                     self.trace[self.t - 1, 1] = self.avefitness
     86                     print("Generation %d: optimal function value is: %f; average function value is %f" % (
     87                         self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
     88                 self.reproduction()
     89             self.eliminationAndDispersal()
     90 
     91         print("Optimal function value is: %f; " %
     92               self.trace[self.t - 1, 0])
     93         print "Optimal solution is:"
     94         print self.best.chrom
     95         self.printResult()
     96 
     97     def chemotaxls(self):
     98         '''
     99         chemotaxls behavior of baterials
    100         '''
    101         for i in xrange(0, self.sizepop):
    102             tmpInd = copy.deepcopy(self.population[i])
    103             self.fitness[i] += self.communication(tmpInd)
    104             Jlast = self.fitness[i]
    105             rnd = np.random.uniform(low=-1, high=1.0, size=self.vardim)
    106             phi = rnd / np.linalg.norm(rnd)
    107             tmpInd.chrom += self.params[4] * phi
    108             for k in xrange(0, self.vardim):
    109                 if tmpInd.chrom[k] < self.bound[0, k]:
    110                     tmpInd.chrom[k] = self.bound[0, k]
    111                 if tmpInd.chrom[k] > self.bound[1, k]:
    112                     tmpInd.chrom[k] = self.bound[1, k]
    113             tmpInd.calculateFitness()
    114             m = 0
    115             while m < self.params[3]:
    116                 if tmpInd.fitness < Jlast:
    117                     Jlast = tmpInd.fitness
    118                     self.population[i] = copy.deepcopy(tmpInd)
    119                     # print m, Jlast
    120                     tmpInd.fitness += self.communication(tmpInd)
    121                     tmpInd.chrom += self.params[4] * phi
    122                     for k in xrange(0, self.vardim):
    123                         if tmpInd.chrom[k] < self.bound[0, k]:
    124                             tmpInd.chrom[k] = self.bound[0, k]
    125                         if tmpInd.chrom[k] > self.bound[1, k]:
    126                             tmpInd.chrom[k] = self.bound[1, k]
    127                     tmpInd.calculateFitness()
    128                     m += 1
    129                 else:
    130                     m = self.params[3]
    131             self.fitness[i] = Jlast
    132             self.accuFitness[i] += Jlast
    133 
    134     def communication(self, ind):
    135         '''
    136         cell to cell communication
    137         '''
    138         Jcc = 0.0
    139         term1 = 0.0
    140         term2 = 0.0
    141         for j in xrange(0, self.sizepop):
    142             term = 0.0
    143             for k in xrange(0, self.vardim):
    144                 term += (ind.chrom[k] -
    145                          self.population[j].chrom[k]) ** 2
    146             term1 -= self.params[6] * np.exp(-1 * self.params[7] * term)
    147             term2 += self.params[8] * np.exp(-1 * self.params[9] * term)
    148         Jcc = term1 + term2
    149 
    150         return Jcc
    151 
    152     def reproduction(self):
    153         '''
    154         reproduction of baterials
    155         '''
    156         self.sortPopulation()
    157         newpop = []
    158         for i in xrange(0, self.sizepop / 2):
    159             newpop.append(self.population[i])
    160         for i in xrange(self.sizepop / 2, self.sizepop):
    161             self.population[i] = newpop[i - self.sizepop / 2]
    162 
    163     def eliminationAndDispersal(self):
    164         '''
    165         elimination and dispersal of baterials
    166         '''
    167         for i in xrange(0, self.sizepop):
    168             rnd = random.random()
    169             if rnd < self.params[5]:
    170                 self.population[i].generate()
    171 
    172     def printResult(self):
    173         '''
    174         plot the result of the baterial clony foraging algorithm
    175         '''
    176         x = np.arange(0, self.t)
    177         y1 = self.trace[:, 0]
    178         y2 = self.trace[:, 1]
    179         plt.plot(x, y1, 'r', label='optimal value')
    180         plt.plot(x, y2, 'g', label='average value')
    181         plt.xlabel("Iteration")
    182         plt.ylabel("function value")
    183         plt.title(
    184             "Baterial clony foraging algorithm for function optimization")
    185         plt.legend()
    186         plt.show()

     运行程序:

    1 if __name__ == "__main__":
    2 
    3     bound = np.tile([[-600], [600]], 25)
    4     bfo = BFO(60, 25, bound,  [2, 2, 50, 4, 50, 0.25, 0.1, 0.2, 0.1, 10])
    5     bfo.solve()

    ObjFunction见简单遗传算法-python实现

  • 相关阅读:
    微信小程序开发9-宿主环境(2)
    微信小程序开发8-小程序的宿主环境(1)
    微信小程序开发7-JavaScript脚本
    微信小程序开发6-WXSS
    点击底部input输入框,弹出的软键盘挡住input(苹果手机使用第三方输入法 )
    极光推送能获取 registrationId,但是接收不到通知
    App 运行后屏幕顶部和底部各留黑边问题
    App 分辨率相关
    配置隐私协议
    极光推送小结
  • 原文地址:https://www.cnblogs.com/biaoyu/p/4857924.html
Copyright © 2011-2022 走看看