zoukankan      html  css  js  c++  java
  • 和声搜索算法-python实现

    HSIndividual.py

     1 import numpy as np
     2 import ObjFunction
     3 
     4 
     5 class HSIndividual:
     6 
     7     '''
     8     individual of harmony search algorithm
     9     '''
    10 
    11     def __init__(self,  vardim, bound):
    12         '''
    13         vardim: dimension of variables
    14         bound: boundaries of variables
    15         '''
    16         self.vardim = vardim
    17         self.bound = bound
    18         self.fitness = 0.
    19 
    20     def generate(self):
    21         '''
    22         generate a random chromsome for harmony search algorithm
    23         '''
    24         len = self.vardim
    25         rnd = np.random.random(size=len)
    26         self.chrom = np.zeros(len)
    27         for i in xrange(0, len):
    28             self.chrom[i] = self.bound[0, i] + 
    29                 (self.bound[1, i] - self.bound[0, i]) * rnd[i]
    30 
    31     def calculateFitness(self):
    32         '''
    33         calculate the fitness of the chromsome
    34         '''
    35         self.fitness = ObjFunction.GrieFunc(
    36             self.vardim, self.chrom, self.bound)

    HS.py

      1 import numpy as np
      2 from HSIndividual import HSIndividual
      3 import random
      4 import copy
      5 import math
      6 import matplotlib.pyplot as plt
      7 
      8 
      9 class HarmonySearch:
     10 
     11     '''
     12     the class for harmony search algorithm
     13     '''
     14 
     15     def __init__(self, sizepop, vardim, bound, MAXGEN, params):
     16         '''
     17         sizepop: population sizepop
     18         vardim: dimension of variables
     19         bound: boundaries of variables
     20         MAXGEN: termination condition
     21         params: algorithm required parameters, it is a list which is consisting of[HMCR, PAR]
     22         '''
     23         self.sizepop = sizepop
     24         self.vardim = vardim
     25         self.bound = bound
     26         self.MAXGEN = MAXGEN
     27         self.params = params
     28         self.population = []
     29         self.fitness = np.zeros((self.sizepop, 1))
     30         self.trace = np.zeros((self.MAXGEN, 2))
     31 
     32     def initialize(self):
     33         '''
     34         initialize the population of hs
     35         '''
     36         for i in xrange(0, self.sizepop):
     37             ind = HSIndividual(self.vardim, self.bound)
     38             ind.generate()
     39             self.population.append(ind)
     40 
     41     def evaluation(self):
     42         '''
     43         evaluation the fitness of the population
     44         '''
     45         for i in xrange(0, self.sizepop):
     46             self.population[i].calculateFitness()
     47             self.fitness[i] = self.population[i].fitness
     48 
     49     def improvise(self):
     50         '''
     51         improvise a new harmony
     52         '''
     53         ind = HSIndividual(self.vardim, self.bound)
     54         ind.chrom = np.zeros(self.vardim)
     55         for i in xrange(0, self.vardim):
     56             if random.random() < self.params[0]:
     57                 if random.random() < self.params[1]:
     58                     ind.chrom[i] += self.best.chrom[i]
     59                 else:
     60                     worstIdx = np.argmin(self.fitness)
     61                     xr = 2 * self.best.chrom[i] - 
     62                         self.population[worstIdx].chrom[i]
     63                     if xr < self.bound[0, i]:
     64                         xr = self.bound[0, i]
     65                     if xr > self.bound[1, i]:
     66                         xr = self.bound[1, i]
     67                     ind.chrom[i] = self.population[worstIdx].chrom[
     68                         i] + (xr - self.population[worstIdx].chrom[i]) * random.random()
     69             else:
     70                 ind.chrom[i] = self.bound[
     71                     0, i] + (self.bound[1, i] - self.bound[0, i]) * random.random()
     72         ind.calculateFitness()
     73         return ind
     74 
     75     def update(self, ind):
     76         '''
     77         update harmony memory
     78         '''
     79         minIdx = np.argmin(self.fitness)
     80         if ind.fitness > self.population[minIdx].fitness:
     81             self.population[minIdx] = ind
     82             self.fitness[minIdx] = ind.fitness
     83 
     84     def solve(self):
     85         '''
     86         the evolution process of the hs algorithm
     87         '''
     88         self.t = 0
     89         self.initialize()
     90         self.evaluation()
     91         best = np.max(self.fitness)
     92         bestIndex = np.argmax(self.fitness)
     93         self.best = copy.deepcopy(self.population[bestIndex])
     94         self.avefitness = np.mean(self.fitness)
     95         self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
     96         self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
     97         print("Generation %d: optimal function value is: %f; average function value is %f" % (
     98             self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
     99         while self.t < self.MAXGEN - 1:
    100             self.t += 1
    101             ind = self.improvise()
    102             self.update(ind)
    103             best = np.max(self.fitness)
    104             bestIndex = np.argmax(self.fitness)
    105             if best > self.best.fitness:
    106                 self.best = copy.deepcopy(self.population[bestIndex])
    107             self.avefitness = np.mean(self.fitness)
    108             self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
    109             self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
    110             print("Generation %d: optimal function value is: %f; average function value is %f" % (
    111                 self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
    112         print("Optimal function value is: %f; " % self.trace[self.t, 0])
    113         print "Optimal solution is:"
    114         print self.best.chrom
    115         self.printResult()
    116 
    117     def printResult(self):
    118         '''
    119         plot the result of abs algorithm
    120         '''
    121         x = np.arange(0, self.MAXGEN)
    122         y1 = self.trace[:, 0]
    123         y2 = self.trace[:, 1]
    124         plt.plot(x, y1, 'r', label='optimal value')
    125         plt.plot(x, y2, 'g', label='average value')
    126         plt.xlabel("Iteration")
    127         plt.ylabel("function value")
    128         plt.title("Harmony search algorithm for function optimization")
    129         plt.legend()
    130         plt.show()

     运行程序:

    1 if __name__ == "__main__":
    2 
    3     bound = np.tile([[-600], [600]], 25)
    4     hs = HS(60, 25, bound, 5000, [0.9950, 0.4])
    5     hs.solve()

     ObjFunction见简单遗传算法-python实现

  • 相关阅读:
    easyui源码翻译1.32--ValidateBox(验证框)
    easyui源码翻译1.32--TreeGrid(树形表格)
    easyui源码翻译1.32--Tree(树)
    easyui源码翻译1.32--TimeSpinner(时间微调)
    easyui源码翻译1.32--Tabs(选项卡)
    easyui源码翻译1.32--SplitButton(分割按钮)
    easyui源码翻译1.32--Slider(滑动条)
    easyui源码翻译1.32--SearchBox(搜索框)
    广度和深度-活在当下!
    IT人为了家庭和自己请保重自己~活在当下!
  • 原文地址:https://www.cnblogs.com/biaoyu/p/4857932.html
Copyright © 2011-2022 走看看