zoukankan      html  css  js  c++  java
  • 在IDEA中编写Spark的WordCount程序

    1:spark shell仅在测试和验证我们的程序时使用的较多,在生产环境中,通常会在IDE中编制程序,然后打成jar包,然后提交到集群,最常用的是创建一个Maven项目,利用Maven来管理jar包的依赖。

    2:配置Maven的pom.xml:

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
    
        <groupId>com.bie</groupId>
        <artifactId>sparkWordCount</artifactId>
        <version>1.0-SNAPSHOT</version>
    
        <properties>
            <maven.compiler.source>1.7</maven.compiler.source>
            <maven.compiler.target>1.7</maven.compiler.target>
            <encoding>UTF-8</encoding>
            <scala.version>2.10.6</scala.version>
            <scala.compat.version>2.10</scala.compat.version>
        </properties>
    
        <dependencies>
            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
                <version>${scala.version}</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.10</artifactId>
                <version>1.5.2</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-streaming_2.10</artifactId>
                <version>1.5.2</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-client</artifactId>
                <version>2.6.2</version>
            </dependency>
        </dependencies>
    
        <build>
            <sourceDirectory>src/main/scala</sourceDirectory>
            <testSourceDirectory>src/test/scala</testSourceDirectory>
            <plugins>
                <plugin>
                    <groupId>net.alchim31.maven</groupId>
                    <artifactId>scala-maven-plugin</artifactId>
                    <version>3.2.0</version>
                    <executions>
                        <execution>
                            <goals>
                                <goal>compile</goal>
                                <goal>testCompile</goal>
                            </goals>
                            <configuration>
                                <args>
                                    <arg>-make:transitive</arg>
                                    <arg>-dependencyfile</arg>
                                    <arg>${project.build.directory}/.scala_dependencies</arg>
                                </args>
                            </configuration>
                        </execution>
                    </executions>
                </plugin>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-surefire-plugin</artifactId>
                    <version>2.18.1</version>
                    <configuration>
                        <useFile>false</useFile>
                        <disableXmlReport>true</disableXmlReport>
                        <includes>
                            <include>**/*Test.*</include>
                            <include>**/*Suite.*</include>
                        </includes>
                    </configuration>
                </plugin>
    
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-shade-plugin</artifactId>
                    <version>2.3</version>
                    <executions>
                        <execution>
                            <phase>package</phase>
                            <goals>
                                <goal>shade</goal>
                            </goals>
                            <configuration>
                                <filters>
                                    <filter>
                                        <artifact>*:*</artifact>
                                        <excludes>
                                            <exclude>META-INF/*.SF</exclude>
                                            <exclude>META-INF/*.DSA</exclude>
                                            <exclude>META-INF/*.RSA</exclude>
                                        </excludes>
                                    </filter>
                                </filters>
                                <transformers>
                                    <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                        <mainClass>com.bie.WordCount</mainClass>
                                    </transformer>
                                </transformers>
                            </configuration>
                        </execution>
                    </executions>
                </plugin>
            </plugins>
        </build>
    </project>

    注意:配置好pom.xml以后,点击Enable Auto-Import即可;

    3:将src/main/java和src/test/java分别修改成src/main/scala和src/test/scala,与pom.xml中的配置保持一致();

    4:新建一个scala class,类型为Object,然后编写spark程序,如下所示:

    import org.apache.spark.{SparkConf, SparkContext}
    
    object WordCount {
    
      def main(args: Array[String]): Unit = {
        //创建SparkConf()并且设置App的名称
        val conf = new SparkConf().setAppName("wordCount");
        //创建SparkContext,该对象是提交spark app的入口
        val sc = new SparkContext(conf);
        //使用sc创建rdd,并且执行相应的transformation和action
        sc.textFile(args(0)).flatMap(_.split(" ")).map((_ ,1)).reduceByKey(_ + _,1).sortBy(_._2,false).saveAsTextFile(args(1));
        //停止sc,结束该任务
        sc.stop();
      }
    }

    5:使用Maven打包:首先修改pom.xml中的mainClass,使其和自己的类路径对应起来:

    然后,点击idea右侧的Maven Project选项,点击Lifecycle,选择clean和package,然后点击Run Maven Build:

    等待编译完成,选择编译成功的jar包,并将该jar上传到Spark集群中的某个节点上:

    记得,启动你的hdfs和Spark集群,然后使用spark-submit命令提交Spark应用(注意参数的顺序):

    可以看下简单的几行代码,但是打成的包就将近百兆,都是封装好的啊,感觉牛人太多了。

     

    然后开始进行Spark Submit提交操作,命令如下所示:

    [root@master spark-1.6.1-bin-hadoop2.6]# bin/spark-submit 
    > --class com.bie.WordCount 
    > --master spark://master:7077 
    > --executor-memory 512M 
    > --total-executor-cores 2 
    > /home/hadoop/data_hadoop/sparkWordCount-1.0-SNAPSHOT.jar 
    > hdfs://master:9000/wordcount.txt 
    > hdfs://master:9000/output

    或者如下:
    bin/spark-submit --class com.bie.WordCount --master spark://master:7077 --executor-memory 512M --total-executor-cores 2 /home/hadoop/data_hadoop/sparkWordCount-1.0-SNAPSHOT.jar hdfs://master:9000/wordcount.txt hdfs://master:9000/outpu

    操作如下所示:

    可以在图形化页面看到多了一个Application:

    然后呢,就出错了,学知识,不出点错,感觉都不正常:

      1 org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 seconds]. This timeout is controlled by spark.rpc.askTimeout
      2     at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
      3     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
      4     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
      5     at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
      6     at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:76)
      7     at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:101)
      8     at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:77)
      9     at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.removeExecutor(CoarseGrainedSchedulerBackend.scala:359)
     10     at org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend.executorRemoved(SparkDeploySchedulerBackend.scala:144)
     11     at org.apache.spark.deploy.client.AppClient$ClientEndpoint$$anonfun$receive$1.applyOrElse(AppClient.scala:186)
     12     at org.apache.spark.rpc.netty.Inbox$$anonfun$process$1.apply$mcV$sp(Inbox.scala:116)
     13     at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:204)
     14     at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100)
     15     at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:215)
     16     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
     17     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
     18     at java.lang.Thread.run(Thread.java:745)
     19 Caused by: java.util.concurrent.TimeoutException: Futures timed out after [120 seconds]
     20     at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
     21     at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
     22     at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
     23     at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
     24     at scala.concurrent.Await$.result(package.scala:107)
     25     at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75)
     26     ... 12 more
     27 18/02/23 01:28:46 WARN NettyRpcEndpointRef: Error sending message [message = UpdateBlockInfo(BlockManagerId(driver, 192.168.3.129, 60565),broadcast_1_piece0,StorageLevel(false, true, false, false, 1),2358,0,0)] in 1 attempts
     28 org.apache.spark.rpc.RpcTimeoutException: Cannot receive any reply in 120 seconds. This timeout is controlled by spark.rpc.askTimeout
     29     at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
     30     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
     31     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
     32     at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
     33     at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:185)
     34     at scala.util.Try$.apply(Try.scala:161)
     35     at scala.util.Failure.recover(Try.scala:185)
     36     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
     37     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
     38     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
     39     at org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
     40     at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
     41     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
     42     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
     43     at scala.concurrent.Promise$class.complete(Promise.scala:55)
     44     at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153)
     45     at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
     46     at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
     47     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
     48     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.processBatch$1(Future.scala:643)
     49     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply$mcV$sp(Future.scala:658)
     50     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
     51     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
     52     at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:72)
     53     at scala.concurrent.Future$InternalCallbackExecutor$Batch.run(Future.scala:634)
     54     at scala.concurrent.Future$InternalCallbackExecutor$.scala$concurrent$Future$InternalCallbackExecutor$$unbatchedExecute(Future.scala:694)
     55     at scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:685)
     56     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
     57     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
     58     at scala.concurrent.Promise$class.tryFailure(Promise.scala:112)
     59     at scala.concurrent.impl.Promise$DefaultPromise.tryFailure(Promise.scala:153)
     60     at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:241)
     61     at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
     62     at java.util.concurrent.FutureTask.run(FutureTask.java:262)
     63     at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
     64     at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
     65     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
     66     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
     67     at java.lang.Thread.run(Thread.java:745)
     68 Caused by: java.util.concurrent.TimeoutException: Cannot receive any reply in 120 seconds
     69     at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:242)
     70     ... 7 more
     71 
     72 
     73 18/02/23 01:30:48 WARN NettyRpcEndpointRef: Error sending message [message = RemoveExecutor(0,Command exited with code 1)] in 2 attempts
     74 org.apache.spark.rpc.RpcTimeoutException: Cannot receive any reply in 120 seconds. This timeout is controlled by spark.rpc.askTimeout
     75     at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
     76     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
     77     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
     78     at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
     79     at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:185)
     80     at scala.util.Try$.apply(Try.scala:161)
     81     at scala.util.Failure.recover(Try.scala:185)
     82     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
     83     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
     84     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
     85     at org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
     86     at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
     87     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
     88     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
     89     at scala.concurrent.Promise$class.complete(Promise.scala:55)
     90     at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153)
     91     at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
     92     at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
     93     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
     94     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.processBatch$1(Future.scala:643)
     95     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply$mcV$sp(Future.scala:658)
     96     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
     97     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
     98     at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:72)
     99     at scala.concurrent.Future$InternalCallbackExecutor$Batch.run(Future.scala:634)
    100     at scala.concurrent.Future$InternalCallbackExecutor$.scala$concurrent$Future$InternalCallbackExecutor$$unbatchedExecute(Future.scala:694)
    101     at scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:685)
    102     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
    103     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
    104     at scala.concurrent.Promise$class.tryFailure(Promise.scala:112)
    105     at scala.concurrent.impl.Promise$DefaultPromise.tryFailure(Promise.scala:153)
    106     at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:241)
    107     at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
    108     at java.util.concurrent.FutureTask.run(FutureTask.java:262)
    109     at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
    110     at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
    111     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    112     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    113     at java.lang.Thread.run(Thread.java:745)
    114 Caused by: java.util.concurrent.TimeoutException: Cannot receive any reply in 120 seconds
    115     at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:242)
    116     ... 7 more
    117 18/02/23 01:30:49 WARN NettyRpcEndpointRef: Error sending message [message = UpdateBlockInfo(BlockManagerId(driver, 192.168.3.129, 60565),broadcast_1_piece0,StorageLevel(false, true, false, false, 1),2358,0,0)] in 2 attempts
    118 org.apache.spark.rpc.RpcTimeoutException: Cannot receive any reply in 120 seconds. This timeout is controlled by spark.rpc.askTimeout
    119     at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
    120     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
    121     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
    122     at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
    123     at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:185)
    124     at scala.util.Try$.apply(Try.scala:161)
    125     at scala.util.Failure.recover(Try.scala:185)
    126     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
    127     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
    128     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
    129     at org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
    130     at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
    131     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
    132     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
    133     at scala.concurrent.Promise$class.complete(Promise.scala:55)
    134     at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153)
    135     at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
    136     at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
    137     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
    138     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.processBatch$1(Future.scala:643)
    139     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply$mcV$sp(Future.scala:658)
    140     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
    141     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
    142     at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:72)
    143     at scala.concurrent.Future$InternalCallbackExecutor$Batch.run(Future.scala:634)
    144     at scala.concurrent.Future$InternalCallbackExecutor$.scala$concurrent$Future$InternalCallbackExecutor$$unbatchedExecute(Future.scala:694)
    145     at scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:685)
    146     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
    147     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
    148     at scala.concurrent.Promise$class.tryFailure(Promise.scala:112)
    149     at scala.concurrent.impl.Promise$DefaultPromise.tryFailure(Promise.scala:153)
    150     at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:241)
    151     at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
    152     at java.util.concurrent.FutureTask.run(FutureTask.java:262)
    153     at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
    154     at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
    155     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    156     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    157     at java.lang.Thread.run(Thread.java:745)
    158 Caused by: java.util.concurrent.TimeoutException: Cannot receive any reply in 120 seconds
    159     at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:242)
    160     ... 7 more

     解决思路,百度了一下,也没缕出思路,就只知道是连接超时了,超过了120s,然后呢,我感觉是自己内存设置小了,因为开的虚拟机,主机8G,三台虚拟机,每台分了1G内存,然后设置Spark可以占用800M,跑程序的时候,第一次设置为512M,就连接超时了,第二次设置为了700M,顺利跑完,可以看看跑的过程,还是很有意思的:

      1 [root@master hadoop]# bin/spark-submit --class com.bie.WordCount --master spark://master:7077 --executor-memory 700M --total-executor-cores 2 /home/hadoop/data_hadoop/sparkWordCount-1.0-SNAPSHOT.jar hdfs://master:9000/wordcount.txt hdfs://master:9000/output
      2 bash: bin/spark-submit: No such file or directory
      3 [root@master hadoop]# cd spark-1.6.1-bin-hadoop2.6/
      4 [root@master spark-1.6.1-bin-hadoop2.6]# bin/spark-submit --class com.bie.WordCount --master spark://master:7077 --executor-memory 700M --total-executor-cores 2 /home/hadoop/data_hadoop/sparkWordCount-1.0-SNAPSHOT.jar hdfs://master:9000/wordcount.txt hdfs://master:9000/output
      5 18/02/23 01:45:46 INFO SparkContext: Running Spark version 1.6.1
      6 18/02/23 01:45:47 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
      7 18/02/23 01:45:47 INFO SecurityManager: Changing view acls to: root
      8 18/02/23 01:45:47 INFO SecurityManager: Changing modify acls to: root
      9 18/02/23 01:45:47 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
     10 18/02/23 01:45:48 INFO Utils: Successfully started service 'sparkDriver' on port 60097.
     11 18/02/23 01:45:49 INFO Slf4jLogger: Slf4jLogger started
     12 18/02/23 01:45:49 INFO Remoting: Starting remoting
     13 18/02/23 01:45:49 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@192.168.3.129:55353]
     14 18/02/23 01:45:49 INFO Utils: Successfully started service 'sparkDriverActorSystem' on port 55353.
     15 18/02/23 01:45:49 INFO SparkEnv: Registering MapOutputTracker
     16 18/02/23 01:45:49 INFO SparkEnv: Registering BlockManagerMaster
     17 18/02/23 01:45:49 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-17e41a67-b880-4c06-95eb-a0f64928f668
     18 18/02/23 01:45:49 INFO MemoryStore: MemoryStore started with capacity 517.4 MB
     19 18/02/23 01:45:49 INFO SparkEnv: Registering OutputCommitCoordinator
     20 18/02/23 01:45:50 INFO Utils: Successfully started service 'SparkUI' on port 4040.
     21 18/02/23 01:45:50 INFO SparkUI: Started SparkUI at http://192.168.3.129:4040
     22 18/02/23 01:45:50 INFO HttpFileServer: HTTP File server directory is /tmp/spark-99c897ab-ea17-4797-8695-3a5df89ed490/httpd-f346e1dd-642d-437d-8947-6190f2e83065
     23 18/02/23 01:45:50 INFO HttpServer: Starting HTTP Server
     24 18/02/23 01:45:50 INFO Utils: Successfully started service 'HTTP file server' on port 35900.
     25 18/02/23 01:45:51 INFO SparkContext: Added JAR file:/home/hadoop/data_hadoop/sparkWordCount-1.0-SNAPSHOT.jar at http://192.168.3.129:35900/jars/sparkWordCount-1.0-SNAPSHOT.jar with timestamp 1519379151547
     26 18/02/23 01:45:52 INFO AppClient$ClientEndpoint: Connecting to master spark://master:7077...
     27 18/02/23 01:45:52 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20180223014552-0004
     28 18/02/23 01:45:52 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 37128.
     29 18/02/23 01:45:52 INFO NettyBlockTransferService: Server created on 37128
     30 18/02/23 01:45:52 INFO BlockManagerMaster: Trying to register BlockManager
     31 18/02/23 01:45:52 INFO AppClient$ClientEndpoint: Executor added: app-20180223014552-0004/0 on worker-20180223110813-192.168.3.131-55934 (192.168.3.131:55934) with 1 cores
     32 18/02/23 01:45:52 INFO SparkDeploySchedulerBackend: Granted executor ID app-20180223014552-0004/0 on hostPort 192.168.3.131:55934 with 1 cores, 700.0 MB RAM
     33 18/02/23 01:45:52 INFO AppClient$ClientEndpoint: Executor added: app-20180223014552-0004/1 on worker-20180223110811-192.168.3.130-40991 (192.168.3.130:40991) with 1 cores
     34 18/02/23 01:45:52 INFO SparkDeploySchedulerBackend: Granted executor ID app-20180223014552-0004/1 on hostPort 192.168.3.130:40991 with 1 cores, 700.0 MB RAM
     35 18/02/23 01:45:52 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.3.129:37128 with 517.4 MB RAM, BlockManagerId(driver, 192.168.3.129, 37128)
     36 18/02/23 01:45:52 INFO BlockManagerMaster: Registered BlockManager
     37 18/02/23 01:45:52 INFO AppClient$ClientEndpoint: Executor updated: app-20180223014552-0004/1 is now RUNNING
     38 18/02/23 01:45:52 INFO AppClient$ClientEndpoint: Executor updated: app-20180223014552-0004/0 is now RUNNING
     39 18/02/23 01:45:53 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
     40 18/02/23 01:45:53 WARN SizeEstimator: Failed to check whether UseCompressedOops is set; assuming yes
     41 18/02/23 01:45:53 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 146.7 KB, free 146.7 KB)
     42 18/02/23 01:45:53 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 13.9 KB, free 160.6 KB)
     43 18/02/23 01:45:53 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.3.129:37128 (size: 13.9 KB, free: 517.4 MB)
     44 18/02/23 01:45:53 INFO SparkContext: Created broadcast 0 from textFile at WordCount.scala:13
     45 Java HotSpot(TM) Client VM warning: You have loaded library /tmp/libnetty-transport-native-epoll4006421548933729587.so which might have disabled stack guard. The VM will try to fix the stack guard now.
     46 It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'.
     47 18/02/23 01:45:55 INFO SparkDeploySchedulerBackend: Registered executor NettyRpcEndpointRef(null) (slaver1:60082) with ID 1
     48 18/02/23 01:45:55 INFO BlockManagerMasterEndpoint: Registering block manager slaver1:56633 with 282.5 MB RAM, BlockManagerId(1, slaver1, 56633)
     49 18/02/23 01:45:56 INFO deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
     50 18/02/23 01:45:56 INFO deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
     51 18/02/23 01:45:56 INFO deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
     52 18/02/23 01:45:56 INFO deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
     53 18/02/23 01:45:56 INFO deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
     54 18/02/23 01:45:57 INFO SparkDeploySchedulerBackend: Registered executor NettyRpcEndpointRef(null) (slaver2:46908) with ID 0
     55 18/02/23 01:45:57 INFO SparkContext: Starting job: saveAsTextFile at WordCount.scala:13
     56 18/02/23 01:45:58 INFO FileInputFormat: Total input paths to process : 1
     57 18/02/23 01:45:58 INFO BlockManagerMasterEndpoint: Registering block manager slaver2:36572 with 282.5 MB RAM, BlockManagerId(0, slaver2, 36572)
     58 18/02/23 01:45:58 INFO DAGScheduler: Registering RDD 3 (map at WordCount.scala:13)
     59 18/02/23 01:45:58 INFO DAGScheduler: Registering RDD 5 (sortBy at WordCount.scala:13)
     60 18/02/23 01:45:58 INFO DAGScheduler: Got job 0 (saveAsTextFile at WordCount.scala:13) with 1 output partitions
     61 18/02/23 01:45:58 INFO DAGScheduler: Final stage: ResultStage 2 (saveAsTextFile at WordCount.scala:13)
     62 18/02/23 01:45:58 INFO DAGScheduler: Parents of final stage: List(ShuffleMapStage 1)
     63 18/02/23 01:45:58 INFO DAGScheduler: Missing parents: List(ShuffleMapStage 1)
     64 18/02/23 01:45:58 INFO DAGScheduler: Submitting ShuffleMapStage 0 (MapPartitionsRDD[3] at map at WordCount.scala:13), which has no missing parents
     65 18/02/23 01:45:59 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 4.1 KB, free 164.7 KB)
     66 18/02/23 01:45:59 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.3 KB, free 167.0 KB)
     67 18/02/23 01:45:59 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.3.129:37128 (size: 2.3 KB, free: 517.4 MB)
     68 18/02/23 01:45:59 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1006
     69 18/02/23 01:45:59 INFO DAGScheduler: Submitting 2 missing tasks from ShuffleMapStage 0 (MapPartitionsRDD[3] at map at WordCount.scala:13)
     70 18/02/23 01:45:59 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
     71 18/02/23 01:45:59 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, slaver2, partition 0,NODE_LOCAL, 2196 bytes)
     72 18/02/23 01:45:59 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, slaver1, partition 1,NODE_LOCAL, 2196 bytes)
     73 18/02/23 01:47:19 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on slaver1:56633 (size: 2.3 KB, free: 282.5 MB)
     74 18/02/23 01:47:21 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on slaver1:56633 (size: 13.9 KB, free: 282.5 MB)
     75 18/02/23 01:47:22 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on slaver2:36572 (size: 2.3 KB, free: 282.5 MB)
     76 18/02/23 01:47:29 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on slaver2:36572 (size: 13.9 KB, free: 282.5 MB)
     77 18/02/23 01:47:36 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 97388 ms on slaver1 (1/2)
     78 18/02/23 01:48:19 INFO DAGScheduler: ShuffleMapStage 0 (map at WordCount.scala:13) finished in 140.390 s
     79 18/02/23 01:48:19 INFO DAGScheduler: looking for newly runnable stages
     80 18/02/23 01:48:19 INFO DAGScheduler: running: Set()
     81 18/02/23 01:48:19 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 140387 ms on slaver2 (2/2)
     82 18/02/23 01:48:19 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
     83 18/02/23 01:48:19 INFO DAGScheduler: waiting: Set(ShuffleMapStage 1, ResultStage 2)
     84 18/02/23 01:48:19 INFO DAGScheduler: failed: Set()
     85 18/02/23 01:48:19 INFO DAGScheduler: Submitting ShuffleMapStage 1 (MapPartitionsRDD[5] at sortBy at WordCount.scala:13), which has no missing parents
     86 18/02/23 01:48:19 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 3.5 KB, free 170.5 KB)
     87 18/02/23 01:48:19 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 2.0 KB, free 172.5 KB)
     88 18/02/23 01:48:19 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on 192.168.3.129:37128 (size: 2.0 KB, free: 517.4 MB)
     89 18/02/23 01:48:19 INFO SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:1006
     90 18/02/23 01:48:19 INFO DAGScheduler: Submitting 1 missing tasks from ShuffleMapStage 1 (MapPartitionsRDD[5] at sortBy at WordCount.scala:13)
     91 18/02/23 01:48:19 INFO TaskSchedulerImpl: Adding task set 1.0 with 1 tasks
     92 18/02/23 01:48:19 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 2, slaver2, partition 0,NODE_LOCAL, 1956 bytes)
     93 18/02/23 01:48:19 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on slaver2:36572 (size: 2.0 KB, free: 282.5 MB)
     94 18/02/23 01:48:19 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 1 to slaver2:46908
     95 18/02/23 01:48:19 INFO MapOutputTrackerMaster: Size of output statuses for shuffle 1 is 156 bytes
     96 18/02/23 01:48:20 INFO DAGScheduler: ShuffleMapStage 1 (sortBy at WordCount.scala:13) finished in 0.708 s
     97 18/02/23 01:48:20 INFO DAGScheduler: looking for newly runnable stages
     98 18/02/23 01:48:20 INFO DAGScheduler: running: Set()
     99 18/02/23 01:48:20 INFO DAGScheduler: waiting: Set(ResultStage 2)
    100 18/02/23 01:48:20 INFO DAGScheduler: failed: Set()
    101 18/02/23 01:48:20 INFO DAGScheduler: Submitting ResultStage 2 (MapPartitionsRDD[8] at saveAsTextFile at WordCount.scala:13), which has no missing parents
    102 18/02/23 01:48:20 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) in 711 ms on slaver2 (1/1)
    103 18/02/23 01:48:20 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool 
    104 18/02/23 01:48:20 INFO MemoryStore: Block broadcast_3 stored as values in memory (estimated size 65.1 KB, free 237.6 KB)
    105 18/02/23 01:48:20 INFO MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 22.6 KB, free 260.2 KB)
    106 18/02/23 01:48:20 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on 192.168.3.129:37128 (size: 22.6 KB, free: 517.4 MB)
    107 18/02/23 01:48:20 INFO SparkContext: Created broadcast 3 from broadcast at DAGScheduler.scala:1006
    108 18/02/23 01:48:20 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 2 (MapPartitionsRDD[8] at saveAsTextFile at WordCount.scala:13)
    109 18/02/23 01:48:20 INFO TaskSchedulerImpl: Adding task set 2.0 with 1 tasks
    110 18/02/23 01:48:20 INFO TaskSetManager: Starting task 0.0 in stage 2.0 (TID 3, slaver2, partition 0,NODE_LOCAL, 1967 bytes)
    111 18/02/23 01:48:20 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on slaver2:36572 (size: 22.6 KB, free: 282.5 MB)
    112 18/02/23 01:48:20 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to slaver2:46908
    113 18/02/23 01:48:20 INFO MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 136 bytes
    114 18/02/23 01:48:25 INFO DAGScheduler: ResultStage 2 (saveAsTextFile at WordCount.scala:13) finished in 5.008 s
    115 18/02/23 01:48:25 INFO TaskSetManager: Finished task 0.0 in stage 2.0 (TID 3) in 5012 ms on slaver2 (1/1)
    116 18/02/23 01:48:25 INFO TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool 
    117 18/02/23 01:48:25 INFO DAGScheduler: Job 0 finished: saveAsTextFile at WordCount.scala:13, took 147.737606 s
    118 18/02/23 01:48:26 INFO SparkUI: Stopped Spark web UI at http://192.168.3.129:4040
    119 18/02/23 01:48:26 INFO SparkDeploySchedulerBackend: Shutting down all executors
    120 18/02/23 01:48:26 INFO SparkDeploySchedulerBackend: Asking each executor to shut down
    121 18/02/23 01:48:26 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
    122 18/02/23 01:48:26 INFO MemoryStore: MemoryStore cleared
    123 18/02/23 01:48:26 INFO BlockManager: BlockManager stopped
    124 18/02/23 01:48:26 INFO BlockManagerMaster: BlockManagerMaster stopped
    125 18/02/23 01:48:26 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
    126 18/02/23 01:48:26 INFO SparkContext: Successfully stopped SparkContext
    127 18/02/23 01:48:26 INFO ShutdownHookManager: Shutdown hook called
    128 18/02/23 01:48:26 INFO ShutdownHookManager: Deleting directory /tmp/spark-99c897ab-ea17-4797-8695-3a5df89ed490
    129 18/02/23 01:48:26 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
    130 18/02/23 01:48:26 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports.
    131 18/02/23 01:48:26 INFO ShutdownHookManager: Deleting directory /tmp/spark-99c897ab-ea17-4797-8695-3a5df89ed490/httpd-f346e1dd-642d-437d-8947-6190f2e83065
    132 [root@master spark-1.6.1-bin-hadoop2.6]# 

    最后查看执行结果即可(由于第一次跑失败了,作为强迫症的我就把第一次的输出结果文件删除了):

  • 相关阅读:
    【转】 Ubuntu安装jdk报错:-bash /usr/.../java:No such file or directroy
    sudo 出现unable to resolve host 解决方法
    C99 布尔
    面向对象?
    高斯消元
    白皮 Chapter 2
    白皮 Chapter 1
    开启暑假新生活( •̀ ω •́ )
    [vijos P1040] 高精度乘法
    [SCOI2007] 修车
  • 原文地址:https://www.cnblogs.com/biehongli/p/8462625.html
Copyright © 2011-2022 走看看