简要题意:
给定一棵树,求它的重心,以及 以它为根的最大子树的大小。
重心的定义:以 (i) 为根的最大子树最小的 (i) 编号。
首先扫清一个误区:
初阶的 ( exttt{Oier}) 可能觉得,那重心就是叶子节点了?
不是这样的。如果把叶子结点拿起来作为根,那么 除叶子结点外的其它所有节点都是一个子树,所以 一般来说 叶子结点并不是重心。(也不排除深度 (=2) 的情况)
那么,其实以 (i) 为根的最大子树分为两部分:
-
当前以 (i) 为根的子树个数(包括自己),记作 (d_i).
-
不包含在 (i) 为根的子树中的,即 (sum - d_i).((sum) 表示一共有多少个点)
显然,我么可以用一重 ( ext{dfs}) 求出 (d_i),然后打擂即可得出。
细节:(sum ot = n),只是节点 (leq n),不一定会出现。
时间复杂度:(O(n)).
实际得分:(100pts).
#pragma GCC optimize(2)
#include<cstdio>
#include<vector>
#include<string.h> //memset 在这个库里
#include<iostream>
#include<algorithm> //POJ 不支持万能头,只能手写
using namespace std;
const int N=2e5+1;
inline int read(){char ch=getchar();int f=1; while(!isdigit(ch)) {if(ch=='-') f=-f; ch=getchar();}
int x=0;while(isdigit(ch)) x=x*10+ch-'0',ch=getchar(); return x*f;}
int n,mini,minh,T;
int d[N];
vector<int> G[N];
inline int dfs(int dep,int fa) {
d[dep]=0; int t=0;
for(int i=0;i<G[dep].size();i++) {
int v=G[dep][i]; if(v==fa) continue;
dfs(v,dep); d[dep]+=d[v]+1; //d[i] 是子树大小(不含自己),统计的时候要算儿子自己,所以 +1
t=max(t,d[v]+1); //得到最大子树
} t=max(t,n-d[dep]-1); //和另一边的子树比较,得到最大子树
if(t<mini || (t==mini && dep<minh)) mini=t,minh=dep; //更新答案
}
int main(){
T=read(); while(T--) {
n=read();
for(int i=1;i<n;i++) {
int u=read(),v=read();
G[u].push_back(v);
G[v].push_back(u); //建图
} minh=1e9; mini=1e9; dfs(1,0); //搜索
printf("%d %d
",minh,mini); //答案
memset(d,0,sizeof(d));
for(int i=1;i<=n;i++) G[i].erase(G[i].begin(),G[i].end()); //多组数据初始化
}
return 0;
}