zoukankan      html  css  js  c++  java
  • P1352 没有上司的舞会 题解

    CSDN同步

    原题链接

    简要题意:

    给定一棵树,有点权,求 最大点权的点集使得该点集的点两两不相邻。“相邻” 的定义为 两点属于同一条边的两个端点

    显然,(n leq 6 imes 10^3) 可以考虑 (O(n^2)) 的办法。但是显然可以有更优的做法。

    (f_i) 表示 在以 (i) 为根的子树中((i) 的子孙,不包括祖先) 选 (i) 的答案(g_i) 则为不选 (i) 的答案。

    显然,如果 (i) 选,那么它的所有儿子节点 ( ext{son}) 只能不选。

    如果 (i) 不选,( ext{son}) 可以不选也可以选。

    这里不能本着多多益善的原则,因为点权可能有负数。(允许点集为空)

    所以:

    [egin{cases} f_i = a_i + sum_{j in son_i} g_j \ g_i = sum_{j in son_i} max(f_j , g_j) \ end{cases}]

    时间复杂度:(O(n)).

    实际得分:(100pts).

    #pragma GCC optimize(2)
    #include<bits/stdc++.h>
    using namespace std;
    
    const int N=1e6+1;
    
    inline int read(){char ch=getchar(); int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
    	int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}
    
    int n,a[N],f[N],g[N],ans=0;
    vector<int> G[N]; bool h[N];
    
    inline void dfs(int dep) {
    	f[dep]=a[dep];
    	for(int i=0;i<G[dep].size();i++) dfs(G[dep][i]); //得到子孙的答案
    	for(int i=0;i<G[dep].size();i++) {
    		int v=G[dep][i];
    		f[dep]+=g[v]; g[dep]+=max(f[v],g[v]); //转移
    	}
    }
    
    inline int find_root() {
    	for(int i=1;i<=n;i++)
    		if(!h[i]) return i;
    } //寻找根节点
    
    int main() {
    	n=read();
    	for(int i=1;i<=n;i++) a[i]=read();
    	for(int i=1;i<n;i++) {
    		int u=read(),v=read();
    		G[v].push_back(u); h[u]=1; 
    	} int root;dfs(root=find_root()); 
    	printf("%d
    ",max(f[root],g[root]));
    	return 0;
    }
    
    
  • 相关阅读:
    python 列表、元组、字典总结
    python 字典
    python 元组
    python 列表
    JMeter的作用域与执行顺序
    JMeter第一个实战
    JMeter录制的两种方法
    JMeter常用功能
    初识jmeter2
    handler的拒绝策略:
  • 原文地址:https://www.cnblogs.com/bifanwen/p/12818658.html
Copyright © 2011-2022 走看看