zoukankan      html  css  js  c++  java
  • JAVA8学习——从源码角度深入Stream流(学习过程)

    从源代码深入Stream /

    学习的时候,官方文档是最重要的.

    及其重要的内容我们不仅要知道stream用,要知道为什么这么用,还要知道底层是怎么去实现的.

    --个人注释:从此看出,虽然新的jdk版本对开发人员提供了很大的遍历,但是从底层角度来说,实现确实是非常复杂的.
    --对外提供很简单的接口使用. (一定是框架给封装到底层了,所以你才用着简单.)

    遇到问题,能够从底层深入解决问题.

    学习一门技术的时候,先学会用,然后去挖掘深层次的内容(底层代码和运作方式).

    引入:Example.

    public class StudentTest1 {
        public static void main(String[] args) {
            Student student1 = new Student("zhangsan", 80);
            Student student2 = new Student("lisi", 90);
            Student student3 = new Student("wangwu", 100);
            Student student4 = new Student("zhaoliu", 90);
    
            List<Student> students = Arrays.asList(student1, student2, student3, student4);
    
            //collect()方法深入源码详解
            //op1:集合转换为stream, 然后stream转换为List
            List<Student> students1 = students.stream().collect(Collectors.toList());
            students1.forEach(System.out::println);
    
            System.out.println("----------");
            System.out.println("count: "+ students.stream().collect(counting()));//Collectors类提供的counting()方法
            System.out.println("count: "+ students.stream().count()); //stream提供的方法 , 底层实现 mapToLong()->sum
    
            //当jdk底层提供有通用的方法和具体的实现方法,越具体的越好.
        }
    }
    

    静态导入(直接导入指定Java类中实现的方法)

    import static java.util.stream.Collectors.*;
    
    • collect:收集器
    • Collector是一个接口,是特别重要的接口.

    Collector接口源码解读

    题外话:虽然JDK提供了很多Collector的实现,但是很多人仅停留在使用阶段.

    我们这次一行一行的读javadoc. 因为真的很重要.

    /**
     * A <a href="package-summary.html#Reduction">mutable reduction operation</a> that
     * accumulates input elements into a mutable result container, optionally transforming
     * the accumulated result into a final representation after all input elements
     * have been processed.  Reduction operations can be performed either sequentially
     * or in parallel.
     一个可变的汇聚操作.将输入元素累积到可变的结果容器当中.它会在所有元素都处理完毕后,将累积之后的结果转换成一个最终的表示(这是一个可选操作).汇聚操作支持串行和并行两种方式执行.
     
     --如 ArrayList:就是一个可变的容器.
     --支持并行操作:确保数据不会错,线程可以并发.很难.另外并不是说并行一定比串行要快,因为并行是有额外开销的.
     
     *
     * <p>Examples of mutable reduction operations include:
     * accumulating elements into a {@code Collection}; concatenating
     * strings using a {@code StringBuilder}; computing summary information about
     * elements such as sum, min, max, or average; computing "pivot table" summaries
     * such as "maximum valued transaction by seller", etc.  The class {@link Collectors}
     * provides implementations of many common mutable reductions.
     可变的reduction(汇聚)操作包括:将元素累积到集合当中,使用StringBuilder将字符串给拼在一起,计算关于元素的sum,min,max or average等,计算数据透视图计算:如根据销售商获取最大销售额等.这个Collectors类,提供了大量的可变汇聚的实现.
     
     -- Collectors本身实际上是一个工厂.
     
     *
     * <p>A {@code Collector} is specified by four functions that work together to
     * accumulate entries into a mutable result container, and optionally perform
     * a final transform on the result.  They are: <ul>
     *     <li>creation of a new result container ({@link #supplier()})</li>
     *     <li>incorporating a new data element into a result container ({@link #accumulator()})</li>
     *     <li>combining two result containers into one ({@link #combiner()})</li>
     *     <li>performing an optional final transform on the container ({@link #finisher()})</li>
     * </ul>
     一个Collector是由4个函数组成的,可以对结果进行一个最终的转化.
     4个方法分别是:
     1.创建一个新的接结果容器 <supplier()>  new  
     2.将新的数据元素给合并到一个结果容器中.<accumulator()>  add
     3.将两个结果容器合并成一个.<combiner()>  + 
     4.将中间的累积类型,转换成结果类型. <finisher()>  result
     每个方法都会返回一个函数式皆苦.
     --学习的时候,官方文档是最重要的.
     *
     * <p>Collectors also have a set of characteristics, such as
     * {@link Characteristics#CONCURRENT}, that provide hints that can be used by a
     * reduction implementation to provide better performance.
     Collectors 还会返回这么一个集合 Characteristics#CONCURRENT. (也就是这个类中的枚举类)
     
     *
     * <p>A sequential implementation of a reduction using a collector would
     * create a single result container using the supplier function, and invoke the
     * accumulator function once for each input element. 
     
     * A parallel implementation
     * would partition the input, create a result container for each partition,
     * accumulate the contents of each partition into a subresult for that partition,
     * and then use the combiner function to merge the subresults into a combined
     * result.
     一个汇聚操作串行的实现,会创建一个唯一的一个结果容器.使用<Supplier>函数. 每一个输入元素都会调用累积函数(accumulator())一次. 
     
     一个并行的实现,将会对输入进行分区,分成多个区域,每一次分区都会创建一个结果容器,然后函数.累积每一个结果容器的内容区内形成一个,然后通过comtainer()给合并成一个.
     -- 解释:
     combiner函数,假如有4个线程同时去执行,那么就会生成4个部分结果.
     结果分别是:1.2.3.4
     可能是:
     1.2 -> 5 
     5.3 -> 6
     6.4 -> 7
     这5.6.7新创建的集合,就叫做 新的结果容器
     
     也可能是:
     1.2 -> 1+2 (新的一个)
     1.3 -> 1(新的一个)
     这种新的折叠后的,叫做折叠成一个参数容器.
     
     *
     * <p>To ensure that sequential and parallel executions produce equivalent
     * results, the collector functions must satisfy an <em>identity</em> and an
     * <a href="package-summary.html#Associativity">associativity</a> constraints.
     为了确保串行与并行获得等价的结果.  collector(收集器)的函数必须满足2个条件.
     1. identity: 同一性
     2.	Associativity :结合性
     
     *
     * <p>The identity constraint says that for any partially accumulated result,
     * combining it with an empty result container must produce an equivalent
     * result.  That is, for a partially accumulated result {@code a} that is the
     * result of any series of accumulator and combiner invocations, {@code a} must
     * be equivalent to {@code combiner.apply(a, supplier.get())}.
     同一性是说:针对于任何部分累积的结果来说,将他与一个空的容器融合,必须会生成一个等价的结果.等价于部分的累积结果.
     也就是说对于一个部分的累积结果a,对于任何一条线上的combiner invocations.
     a == combiner.apply(a, supplier.get())
     	supplier.get() ,获取一个空的结果容器.
     	然后将a与空的结果容器容器. 保证a == (融合等式) .
     	
     	这个特性就是:同一性.
     	
     --部分累积的结果:是在流程中产生的中间结果.
     --解释上述等式为什么成立:a是线程某一个分支得到的部分结果. 后面的是调用BiarnyOperator.apply()
     (List<String> list1,List<String> list2)->{list1.addAll(list2);return list1;}
     这个类似于之前说的: 将两个结果集折叠到同一个容器.然后返回来第一个结果的融合.
     
     *
     * <p>The associativity constraint says that splitting the computation must
     * produce an equivalent result.  That is, for any input elements {@code t1}
     * and {@code t2}, the results {@code r1} and {@code r2} in the computation
     * below must be equivalent:
      结合性是说:分割执行的时候,也必须产生相同的结果.每一份处理完之后,也得到相应的结果.
     
     * <pre>{@code
     *     A a1 = supplier.get();//获取结果容器 a1.
     *     accumulator.accept(a1, t1); //a1:每一次累积的中间结果, t1:流中下一个待累积的元素.
     *     accumulator.accept(a1, t2); //t1->a1, a1已经有东西. 然后 t2->t1 = r1 (也就是下一步)
     *     R r1 = finisher.apply(a1);  // result without splitting
     *
     *     A a2 = supplier.get();  //另外一个线程
     *     accumulator.accept(a2, t1);   //两个结果集转换成中间结果.
     *     A a3 = supplier.get();  //第三个线程
     *     accumulator.accept(a3, t2); //两个中间结果转换成最终结果.
     *     R r2 = finisher.apply(combiner.apply(a2, a3));  // result with splitting
     * } </pre>
    所以要保证:无论是单线程,还是多线程(串行和并行)的结果都要是一样的. 
    这就是所谓的:结合性.
     
     --个人注释:从此看出,虽然新的jdk版本对开发人员提供了很大的遍历,但是从底层角度来说,实现确实是非常复杂的.
     --对外提供很简单的接口使用.  (一定是框架给封装到底层了,所以你才用着简单.)
     
     *
     * <p>For collectors that do not have the {@code UNORDERED} characteristic,
     * two accumulated results {@code a1} and {@code a2} are equivalent if
     * {@code finisher.apply(a1).equals(finisher.apply(a2))}.  For unordered
     * collectors, equivalence is relaxed to allow for non-equality related to
     * differences in order.  (For example, an unordered collector that accumulated
     * elements to a {@code List} would consider two lists equivalent if they
     * contained the same elements, ignoring order.)
    对于一个不包含无序的收集器来说, a1 和 a2是等价的. 条件:finisher.apply(a1).equals(finisher.apply(a2)
    对于无序的收集器来说:这种等价性就没有那么严格了,它会考虑到顺序上的区别所对应的不相等性.
    
     *
     * <p>Libraries that implement reduction based on {@code Collector}, such as
     * {@link Stream#collect(Collector)}, must adhere to the following constraints:
     基于Collector 去实现汇聚(reduction)操作的这种库, 必须遵守如下的约定.
     
     - 注释:汇聚其实有多种实现.
     如Collectors中的reducting(). 
     如Stream接口中有三种reduce()重载的方法.
     
     这两个有很大的本质的差别: (注意单线程和多线程情况下的影响.)
     reduce:要求不可变性
     Collectors收集器方式:可变的结果容器.
     
     * <ul>
     *     <li>The first argument passed to the accumulator function, both
     *     arguments passed to the combiner function, and the argument passed to the
     *     finisher function must be the result of a previous invocation of the
     *     result supplier, accumulator, or combiner functions.</li>
     			1. 传递给accumulate函数的参数,以及给Combiner的两个参数,以及finisher函数的参数,
     				他们必须是 这几个supplier, accumulator, or combiner 函数函数上一次调用的结果(泛型-T).
     
     *     <li>The implementation should not do anything with the result of any of
     *     the result supplier, accumulator, or combiner functions other than to
     *     pass them again to the accumulator, combiner, or finisher functions,
     *     or return them to the caller of the reduction operation.</li>
     			2. 实现不应该对, 生成的  ---  结果 做任何的事情. 除了将他们再传给下一个函数.
     			(中间不要做任何的操作,否则肯定是紊乱的.)
     			
     *     <li>If a result is passed to the combiner or finisher
     *     function, and the same object is not returned from that function, it is
     *     never used again.</li>
     			3.如果一个结果被传递给combiner或者finisher函数,相同的对象并没有从函数里面返回,
     				那么他们再也不会被使用了.(表示已经被用完了.)
     				
     *     <li>Once a result is passed to the combiner or finisher function, it
     *     is never passed to the accumulator function again.</li>
     			4.一个函数如果被执行给了combiner或者finisher函数之后,它再也不会被accumulate函数调用了.
     				(就是说,如果被结束函数执行完了. 就不会再被中间操作了.)
     
     *     <li>For non-concurrent collectors, any result returned from the result
     *     supplier, accumulator, or combiner functions must be serially
     *     thread-confined.  This enables collection to occur in parallel without
     *     the {@code Collector} needing to implement any additional synchronization.
     *     The reduction implementation must manage that the input is properly
     *     partitioned, that partitions are processed in isolation, and combining
     *     happens only after accumulation is complete.</li>
     			5. 对于非并发的收集起来说.从supplier, accumulator, or combiner任何的结果返回一定是被限定在当前的线程了. 所以可以被用在并行的操作了.
     			reduction的操作必须被确保被正确的分析了,4个线程,被分为4个区,不会相互干扰,再都执行完毕之后,再讲中间容器进行融合.形成最终结果返回.
     
     *     <li>For concurrent collectors, an implementation is free to (but not
     *     required to) implement reduction concurrently.  A concurrent reduction
     *     is one where the accumulator function is called concurrently from
     *     multiple threads, using the same concurrently-modifiable result container,
     *     rather than keeping the result isolated during accumulation.
      			6.对于并发的收集器,实现可以自由的选择. 和上面的5相对于.
      			在累积阶段不需要保持独立性.
     
     *     A concurrent reduction should only be applied if the collector has the
     *     {@link Characteristics#UNORDERED} characteristics or if the
     *     originating data is unordered.</li>
     一个并发的,在这个时候一定会被使用; 无序的.
     	
    --到此结束,重要的 概念基本上已经介绍完毕了.
    
     * </ul>
     
     *
     * <p>In addition to the predefined implementations in {@link Collectors}, the
     * static factory methods {@link #of(Supplier, BiConsumer, BinaryOperator, Characteristics...)}
     * can be used to construct collectors.  For example, you could create a collector
     * that accumulates widgets into a {@code TreeSet} with:
     *
     * <pre>{@code
     *     Collector<Widget, ?, TreeSet<Widget>> intoSet =
     *         Collector.of(TreeSet::new, TreeSet::add,
     *                      (left, right) -> { left.addAll(right); return left; });
     * }</pre>
    
    		使用.三个参数构造的 of 方法,()
    		三个参数
    		1.结果容器
    		2.将数据元素累积添加到结果容器
    		3.返回结果容器.(此处使用TreeSet)
    
     *
     * (This behavior is also implemented by the predefined collector.预定义的Collector.
     * {@link Collectors#toCollection(Supplier)}).
     *
     * @apiNote
     * Performing a reduction operation with a {@code Collector} should produce a
     * result equivalent to:
     * <pre>{@code
     *     R container = collector.supplier().get();
     *     for (T t : data)
     *         collector.accumulator().accept(container, t);
     *     return collector.finisher().apply(container);
     * }</pre>
     上述:汇聚容器的实现过程.
     1.创建一个容器
     2.累加到容器
     3.返回结果容器.
     
     *
     * <p>However, the library is free to partition the input, perform the reduction
     * on the partitions, and then use the combiner function to combine the partial
     * results to achieve a parallel reduction.  (Depending on the specific reduction
     * operation, this may perform better or worse, depending on the relative cost
     * of the accumulator and combiner functions.)
     性能的好坏:取决于实际情况.
     (并行不一定比串行性能高.)
     
     *
     * <p>Collectors are designed to be <em>composed</em>; many of the methods
     * in {@link Collectors} are functions that take a collector and produce
     * a new collector.  For example, given the following collector that computes
     * the sum of the salaries of a stream of employees:
     收集器本身被设计成可以组合的. 也就是说收集器本身的组合.例如下.
     
     *
     * <pre>{@code
     *     Collector<Employee, ?, Integer> summingSalaries
     *         = Collectors.summingInt(Employee::getSalary))
     * }</pre>
     Collector(),三个参数.  
     
     *
     * If we wanted to create a collector to tabulate the sum of salaries by
     * department, we could reuse the "sum of salaries" logic using
     * {@link Collectors#groupingBy(Function, Collector)}:
     如果想创建一个组合的容器.
     就是之前用的groupingBy()的分类函数.如下例子.
     
     *
     * <pre>{@code
     *     Collector<Employee, ?, Map<Department, Integer>> summingSalariesByDept
     *         = Collectors.groupingBy(Employee::getDepartment, summingSalaries);
     * }</pre>
     分组->求和
     分组->求和
     二级分组.
     
     *
     * @see Stream#collect(Collector)
     * @see Collectors
     *
     * @param <T> the type of input elements to the reduction operation
     * @param <A> the mutable accumulation type of the reduction operation (often
     *            hidden as an implementation detail)
     * @param <R> the result type of the reduction operation
     * @since 1.8
     */
    

    理解到这里,受益匪浅.

    Collector接口详解

    Collector的三个泛型<T,A,R>详解

     * @param <T> the type of input elements to the reduction operation
     * @param <A> the mutable accumulation type of the reduction operation (often
     *            hidden as an implementation detail)
     * @param <R> the result type of the reduction operatio
    
    • T:需要被融合操作的输入参数的类型 (也就是流中的每一个元素的类型)
    • A:reduction操作的可变的累积的类型.(累积的集合的类型.)(中间结果容器的类型.)(返回结果容器的类型)
    • R:汇聚操作的结果类型.

    supplier()

        /**
         * A function that creates and returns a new mutable result container.
         * 创建一个新的可变结果容器.返回 Supplier函数式接口.
         * @return a function which returns a new, mutable result container
         		泛型 - A : 可变容器的类型.
         */
        Supplier<A> supplier();
    

    accumulator()

    /**
     * A function that folds a value into a mutable result container.
     * 将一个新的元素数据元素折叠(累加)到一个结果容器当中. 返回值为 BiConsumer函数式接口
     * @return a function which folds a value into a mutable result container
     泛型-A:返回的中间容器的类型(结果类型)
     泛型-T:流中待处理的下一个元素的类型.(源类型)
     */
    BiConsumer<A, T> accumulator();
    

    combiner()

    /**
    和并行流紧密相关.
     * A function that accepts two partial results and merges them.  The
     * combiner function may fold state from one argument into the other and
     * return that, or may return a new result container.
     * 接收两个部分结果,然后给合并起来.将结果状态从一个参数转换成另一个参数,或者返回一个新的结果容器....*(有点难理解.) 返回一个组合的操作符函数接口类.
     
     -- 解释:
     combiner函数,假如有4个线程同时去执行,那么就会生成4个部分结果.
     结果分别是:1.2.3.4
     可能是:
     1.2 -> 5 
     5.3 -> 6
     6.4 -> 7
     这5.6.7新创建的集合,就叫做 新的结果容器
     
     也可能是:
     1.2 -> 1+2 (新的一个)
     1.3 -> 1(新的一个)
     这种新的折叠后的,叫做折叠成一个参数容器.
     
     所以:combiner 是 专门用在 并行流中的.
     
     * @return a function which combines two partial results into a combined
     * result
     泛型-A: (结果容器类型.中间结果容器的类型.) TTT 
     */
    BinaryOperator<A> combiner();
    

    finisher()

    /**
     * Perform the final transformation from the intermediate accumulation type
     * {@code A} to the final result type {@code R}.
     *接收一个中间对象,返回另外一个结果.对象.
     * <p>If the characteristic {@code IDENTITY_TRANSFORM} is
     * set, this function may be presumed to be an identity transform with an
     * unchecked cast from {@code A} to {@code R}.
     *如果这个特性被设置值了的话,.....  返回一个Function接口类型.
     * @return a function which transforms the intermediate result to the final
     * result
     泛型-A :结果容器类型
     泛型-R : 最终要使用的类型.(最终返回的结果的类型.)
     */
    Function<A, R> finisher();
    

    枚举类 Characteristics

    		/**
         * Characteristics indicating properties of a {@code Collector}, which can
         * be used to optimize reduction implementations.
          这个类中显示的这些属性,被用作:优化汇聚的实现.
          
          --解释: 类的作用:告诉收集器,我可以对这个目标进行怎么样的执行动作.
         */
        enum Characteristics {
            /**
             * Indicates that this collector is <em>concurrent</em>, meaning that
             * the result container can support the accumulator function being
             * called concurrently with the same result container from multiple
             * threads.
             *
             * <p>If a {@code CONCURRENT} collector is not also {@code UNORDERED},
             * then it should only be evaluated concurrently if applied to an
             * unordered data source.
             */
            CONCURRENT,//表示可以支持并发.
    
            /**
             * Indicates that the collection operation does not commit to preserving
             * the encounter order of input elements.  (This might be true if the
             * result container has no intrinsic order, such as a {@link Set}.)
             */
            UNORDERED,
    
            /**
             * Indicates that the finisher function is the identity function and
             * can be elided.  If set, it must be the case that an unchecked cast
             * from A to R will succeed.
             */
            IDENTITY_FINISH
        }
    

    静态内部类 CollectorImpl

    <此静态类在Collectors类中.>

    static class CollectorImpl<T, A, R> implements Collector<T, A, R> {
            private final Supplier<A> supplier;
            private final BiConsumer<A, T> accumulator;
            private final BinaryOperator<A> combiner;
            private final Function<A, R> finisher;
            private final Set<Characteristics> characteristics;
    
            CollectorImpl(Supplier<A> supplier,
                          BiConsumer<A, T> accumulator,
                          BinaryOperator<A> combiner,
                          Function<A,R> finisher,
                          Set<Characteristics> characteristics) {
                this.supplier = supplier;
                this.accumulator = accumulator;
                this.combiner = combiner;
                this.finisher = finisher;
                this.characteristics = characteristics;
            }
    
            CollectorImpl(Supplier<A> supplier,
                          BiConsumer<A, T> accumulator,
                          BinaryOperator<A> combiner,
                          Set<Characteristics> characteristics) {
                this(supplier, accumulator, combiner, castingIdentity(), characteristics);
            }
    
            @Override
            public BiConsumer<A, T> accumulator() {
                return accumulator;
            }
    
            @Override
            public Supplier<A> supplier() {
                return supplier;
            }
    
            @Override
            public BinaryOperator<A> combiner() {
                return combiner;
            }
    
            @Override
            public Function<A, R> finisher() {
                return finisher;
            }
    
            @Override
            public Set<Characteristics> characteristics() {
                return characteristics;
            }
        }
    

    为什么会定义一个这么一个静态内部类?

    1. 因为,Collectors是一个工厂,向开发者提供非常常见的那些收集器,如counting() , grouping by()....

    2. 绝大多数方法都是静态方法.

    3. Collectors和CollectorImpl紧密相关,结合性非常密切.从设计角度,直接放在一个类里面.


    函数式编程的最大特点:表示做什么,而不是如何做.如:toList(), counting()...

    Collectors收集器注释:

    /**
    
    		收集了常见的一些操作.
     * Implementations of {@link Collector} that implement various useful reduction
     * operations, such as accumulating elements into collections, summarizing
     * elements according to various criteria, etc.
     *
     * <p>The following are examples of using the predefined collectors to perform
     * common mutable reduction tasks:
     	使用预定义的收集器,去执行课常见的收集任务.
     
     以下案例:
     *
     * <pre>{@code
     *     // Accumulate names into a List . 将name融合到LIst中.
     *     List<String> list = people.stream().map(Person::getName).collect(Collectors.toList());
     *
     
     			融合进TreeSet
     *     // Accumulate names into a TreeSet . 
     *     Set<String> set = people.stream().map(Person::getName).collect(Collectors.toCollection(TreeSet::new));
     *
     			转换成字符串,然后用","去分隔.
     *     // Convert elements to strings and concatenate them, separated by commas
     *     String joined = things.stream()
     *                           .map(Object::toString)
     *                           .collect(Collectors.joining(", "));
     *
     
     			计算员工的工资的总数.
     *     // Compute sum of salaries of employee
     *     int total = employees.stream()
     *                          .collect(Collectors.summingInt(Employee::getSalary)));
     
    	 分组:
     
     			根据部门分组.  分类器 
     *     // Group employees by department
     *     Map<Department, List<Employee>> byDept
     *         = employees.stream()
     *                    .collect(Collectors.groupingBy(Employee::getDepartment));
     *
     
     			groupingBy的重载,处理完之后,再处理.
     *     // Compute sum of salaries by department
     *     Map<Department, Integer> totalByDept
     *         = employees.stream()
     *                    .collect(Collectors.groupingBy(Employee::getDepartment,
     *                                                   Collectors.summingInt(Employee::getSalary)));
     *
     
     		分区: partitioningBy()
     		
     *     // Partition students into passing and failing
     *     Map<Boolean, List<Student>> passingFailing =
     *         students.stream()
     *                 .collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD));
     *
     * }</pre>
     *
     * @since 1.8
     */
    

    收集器Collectors的Demo

    Student student1 = new Student("zhangsan", 80);
            Student student2 = new Student("lisi", 90);
            Student student3 = new Student("wangwu", 100);
            Student student4 = new Student("zhaoliu", 90);
            Student student5 = new Student("zhaoliu", 90);
    
            List<Student> students = Arrays.asList(student1, student2, student3, student4,student5);
    
            //collect()方法深入源码详解
            //op1:集合转换为stream, 然后stream转换为List
            List<Student> students1 = students.stream().collect(Collectors.toList());
            students1.forEach(System.out::println);
    
            System.out.println("----------");
            System.out.println("count: "+ students.stream().collect(counting()));//Collectors类提供的counting()方法
            System.out.println("count: "+ students.stream().count()); //stream提供的方法 , 底层实现 mapToLong()->sum
    
            //当jdk底层提供有通用的方法和具体的实现方法,越具体的越好.
    
            //函数使用.
            //分数最小值
            students.stream().collect(minBy(Comparator.comparingInt(Student::getScore))).ifPresent(System.out::println);
            //分数最大值
            students.stream().collect(maxBy(Comparator.comparingInt(Student::getScore))).ifPresent(System.out::println);
            //平均值
            Double collect4 = students.stream().collect(averagingInt(Student::getScore));
            //总和
            Integer collect5 = students.stream().collect(summingInt(Student::getScore));
            //摘要信息 (分数的汇总信息.)
            students.stream().collect(summarizingInt(Student::getScore));
    
            System.out.println("---------");
    
            //字符串拼接
            String collect1 = students.stream().map(Student::getName).collect(joining());
            String collect2 = students.stream().map(Student::getName).collect(joining(","));//带分隔符
            String collect3 = students.stream().map(Student::getName).collect(joining(",", "pre", "suf"));//带分隔符.前缀后缀
    
            //分组
            //二级分组. 先根据分数分组,再根据名字分组.
            Map<Integer, Map<String, List<Student>>> collect = 
                    students.stream().collect(groupingBy(Student::getScore, groupingBy(Student::getName)));
            System.out.println(collect);
            System.out.println("---------");
    
            //分区
            //根据分数分区
            Map<Boolean, List<Student>> collect6 = students.stream().collect(partitioningBy(student -> student.getScore() > 80));
            System.out.println(collect6);
            System.out.println("---------");
    
            //先分区80, 再分区90
            Map<Boolean, Map<Boolean, List<Student>>> collect7 = students.stream().collect(partitioningBy(student -> student.getScore() > 80, partitioningBy(student -> student.getScore() > 90)));
            System.out.println(collect7);
            System.out.println("---------");
    
            //可以看出,Collectors是可以聚合的.
            //先分区,再分组.... 先分区,再求和.... 先分组,再求平均值...  先分组,再进行各种计算...
            Map<Boolean, Long> collect8 = students.stream().collect(partitioningBy(student -> student.getScore() > 80, counting()));
            System.out.println(collect8);
            System.out.println("---------");
    
            //collectingAndThen() 这个方法. 先求最小值,然后再get返回值,一定是有值的.
            Map<String, Student> collect9 =
                    students.stream().collect(groupingBy(Student::getName,
                            collectingAndThen(minBy(Comparator.comparingInt(Student::getScore)), Optional::get)));
            System.out.println(collect9);
            
    
  • 相关阅读:
    YYC松鼠视频pro版安装实操001
    YYC松鼠视频短信对接教程
    此处指讲解自定义的一些目录结构及组件-yyc松鼠短视频系统
    APP启动无视频数据-YYC松鼠短视频系统
    后台提示登录失败----YYC松鼠短视频开源
    C++静态成员变量和静态成员函数
    内联函数和宏定义的区别
    C++中的接口继承和实现继承
    拷贝构造函数(define)
    类的封装
  • 原文地址:https://www.cnblogs.com/bigbaby/p/12150706.html
Copyright © 2011-2022 走看看