zoukankan      html  css  js  c++  java
  • 线程基础:线程池(5)——基本使用(上)

    来源:http://blog.csdn.net/yinwenjie

    1、概述

    从本文开始,我将用两篇文章的篇幅,为各位读者呈现Java中原生的线程池技术。第一篇文章,我将讲解JAVA原生线程池的基本使用,并由此延伸出JAVA中和线程管理相关的类结构体系,然后我们详细描述JAVA原生线程池的结构和工作方式;第二篇文章,我们将继续深入,讲解JAVA原生线程池的高级特性,包括Thread工厂、队列、拒绝原则、钩子和相关工具类。

    如果您是JAVA语言的初学者,请从本篇文章看起;如果您对线程池技术已有一定的了解,那么可以只看下一篇文章;如果您是高手,请绕行;如果您对我的观点有任何意见和建议,请留言,谢谢。^-^

    2、为什么要使用线程池

    这里写图片描述

    前文我们已经讲到,线程是一个操作系统概念。操作系统负责这个线程的创建、挂起、运行、阻塞和终结操作。而操作系统创建线程、切换线程状态、终结线程都要进行CPU调度——这是一个耗费时间和系统资源的事情(《操作系统知识回顾—进程线程模型》

    另一方面,目前大多数生产环境我们所面临问题的技术背景一般是:处理某一次请求的时间是非常短暂的,但是请求数量是巨大的。这种技术背景下,如果我们为每一个请求都单独创建一个线程,那么物理机的所有资源基本上都被操作系统创建线程、切换线程状态、销毁线程这些操作所占用,用于业务请求处理的资源反而减少了。所以最理想的处理方式是,将处理请求的线程数量控制在一个范围,既保证后续的请求不会等待太长时间,又保证物理机将足够的资源用于请求处理本身

    另外,一些操作系统是有最大线程数量限制的。当运行的线程数量逼近这个值的时候,操作系统会变得不稳定。这也是我们要限制线程数量的原因。

    3、线程池的基本使用方式

    JAVA语言为我们提供了两种基础线程池的选择:ScheduledThreadPoolExecutor和ThreadPoolExecutor。它们都实现了ExecutorService接口(注意,ExecutorService接口本身和“线程池”并没有直接关系,它的定义更接近“执行器”,而“使用线程管理的方式进行实现”只是其中的一种实现方式)。这篇文章中,我们主要围绕ThreadPoolExecutor类进行讲解。

    3-1、简单使用

    首先我们来看看ThreadPoolExecutor类的最简单使用方式:

    package test.thread.pool;
    
    import java.util.concurrent.SynchronousQueue;
    import java.util.concurrent.ThreadPoolExecutor;
    import java.util.concurrent.TimeUnit;
    
    import org.apache.commons.logging.Log;
    import org.apache.commons.logging.LogFactory;
    import org.apache.log4j.BasicConfigurator;
    
    public class PoolThreadSimple {
    
        static {
            BasicConfigurator.configure();
        }
    
        public static void main(String[] args) throws Throwable {
    
            /*
             * corePoolSize:核心大小,线程池初始化的时候,就会有这么大
             * maximumPoolSize:线程池最大线程数
             * keepAliveTime:如果当前线程池中线程数大于corePoolSize。
             * 多余的线程,在等待keepAliveTime时间后如果还没有新的线程任务指派给它,它就会被回收
             * 
             * unit:等待时间keepAliveTime的单位
             * 
             * workQueue:等待队列。这个对象的设置是本文将重点介绍的内容
             * */
            ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 10, 1, TimeUnit.MINUTES, new SynchronousQueue<Runnable>());
            for(int index = 0 ; index < 10 ; index ++) {
                poolExecutor.submit(new PoolThreadSimple.TestRunnable(index));
            }
    
            // 没有特殊含义,只是为了保证main线程不会退出
            synchronized (poolExecutor) {
                poolExecutor.wait();
            }
        }
    
        /**
         * 这个就是测试用的线程
         * @author yinwenjie
         */
        private static class TestRunnable implements Runnable {
    
            /**
             * 日志
             */
            private static Log LOGGER = LogFactory.getLog(TestRunnable.class);
    
            /**
             * 记录任务的唯一编号,这样在日志中好做识别
             */
            private Integer index;
    
            public TestRunnable(int index) {
                this.index = index;
            }
    
            /**
             * @return the index
             */
            public Integer getIndex() {
                return index;
            }
    
            @Override
            public void run() {
                /*
                 * 线程中,就只做一件事情:
                 * 等待60秒钟的事件,以便模拟业务操作过程
                 * */
                Thread currentThread  = Thread.currentThread();
                TestRunnable.LOGGER.info("线程:" + currentThread.getId() + " 中的任务(" + this.getIndex() + ")开始执行===");
                synchronized (currentThread) {
                    try {
                        currentThread.wait(60000);
                    } catch (InterruptedException e) {
                        TestRunnable.LOGGER.error(e.getMessage(), e);
                    }
                }
    
                TestRunnable.LOGGER.info("线程:" + currentThread.getId() + " 中的任务(" + this.getIndex() + ")执行完成");
            }
    
        }
    }
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87

    随后的文章中我们将对线程池中的corePoolSize、maximumPoolSize、keepAliveTime、timeUnit、workQueue、threadFactory、handler参数和一些常用/不常用的设置项进行逐一讲解。

    3-2、ThreadPoolExecutor逻辑结构和工作方式

    在上面的代码中,我们创建线程池的时候使用了ThreadPoolExecutor中最简单的一个构造函数:

    public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 1
    • 2
    • 3
    • 4
    • 5

    构造函数中需要传入的参数包括corePoolSize、maximumPoolSize、keepAliveTime、timeUnit和workQueue。要明确理解这些参数(和后续将要介绍的参数)的含义,就首先要搞清楚ThreadPoolExecutor线程池的逻辑结构。

    这里写图片描述

    一定要注意一个概念,即存在于线程池中容器的一定是Thread对象,而不是您要求运行的任务(所以叫线程池而不叫任务池也不叫对象池,更不叫游泳池);您要求运行的任务将被线程池分配给某一个空闲的Thread运行。

    从上图中,我们可以看到构成线程池的几个重要元素:

    • 等待队列:顾名思义,就是您调用线程池对象的submit()方法或者execute()方法,要求线程池运行的任务(这些任务必须实现Runnable接口或者Callable接口)。但是出于某些原因线程池并没有马上运行这些任务,而是送入一个队列等待执行(这些原因后文马上讲解)。

    • 核心线程:线程池主要用于执行任务的是“核心线程”,“核心线程”的数量是您创建线程时所设置的corePoolSize参数决定的。如果不进行特别的设定,线程池中始终会保持corePoolSize数量的线程数(不包括创建阶段)。

    • 非核心线程:一旦任务数量过多(由等待队列的特性决定),线程池将创建“非核心线程”临时帮助运行任务。您设置的大于corePoolSize参数小于maximumPoolSize参数的部分,就是线程池可以临时创建的“非核心线程”的最大数量。这种情况下如果某个线程没有运行任何任务,在等待keepAliveTime时间后,这个线程将会被销毁,直到线程池的线程数量重新达到corePoolSize

    • 要重点理解上一条描述中黑体字部分的内容。也就是说,并不是所谓的“非核心线程”才会被回收;而是谁的空闲时间达到keepAliveTime这个阀值,就会被回收。直到线程池中线程数量等于corePoolSize为止。

    • maximumPoolSize参数也是当前线程池允许创建的最大线程数量。那么如果您设置的corePoolSize参数和您设置的maximumPoolSize参数一致时,线程池在任何情况下都不会回收空闲线程。keepAliveTime和timeUnit也就失去了意义。

    • keepAliveTime参数和timeUnit参数也是配合使用的。keepAliveTime参数指明等待时间的量化值,timeUnit指明量化值单位。例如keepAliveTime=1,timeUnit为TimeUnit.MINUTES,代表空闲线程的回收阀值为1分钟。

    说完了线程池的逻辑结构,下面我们讨论一下线程池是怎样处理某一个运行任务的。下图描述了一个完整的任务处理过程:

    这里写图片描述

    1、首先您可以通过线程池提供的submit()方法或者execute()方法,要求线程池执行某个任务。线程池收到这个要求执行的任务后,会有几种处理情况:

    1.1、如果当前线程池中运行的线程数量还没有达到corePoolSize大小时,线程池会创建一个新的线程运行您的任务,无论之前已经创建的线程是否处于空闲状态

    1.2、如果当前线程池中运行的线程数量已经达到设置的corePoolSize大小,线程池会把您的这个任务加入到等待队列中。直到某一个的线程空闲了,线程池会根据您设置的等待队列规则,从队列中取出一个新的任务执行。

    1.3、如果根据队列规则,这个任务无法加入等待队列。这时线程池就会创建一个“非核心线程”直接运行这个任务。注意,如果这种情况下任务执行成功,那么当前线程池中的线程数量一定大于corePoolSize。

    1.4、如果这个任务,无法被“核心线程”直接执行,又无法加入等待队列,又无法创建“非核心线程”直接执行,且您没有为线程池设置RejectedExecutionHandler。这时线程池会抛出RejectedExecutionException异常,即线程池拒绝接受这个任务。(实际上抛出RejectedExecutionException异常的操作,是ThreadPoolExecutor线程池中一个默认的RejectedExecutionHandler实现:AbortPolicy,这在后文会提到

    2、一旦线程池中某个线程完成了任务的执行,它就会试图到任务等待队列中拿去下一个等待任务(所有的等待任务都实现了BlockingQueue接口,按照接口字面上的理解,这是一个可阻塞的队列接口),它会调用等待队列的poll()方法,并停留在哪里。

    3、当线程池中的线程超过您设置的corePoolSize参数,说明当前线程池中有所谓的“非核心线程”。那么当某个线程处理完任务后,如果等待keepAliveTime时间后仍然没有新的任务分配给它,那么这个线程将会被回收。线程池回收线程时,对所谓的“核心线程”和“非核心线程”是一视同仁的,直到线程池中线程的数量等于您设置的corePoolSize参数时,回收过程才会停止。

    3-3、不常用的设置

    在ThreadPoolExecutor线程池中,有一些不常用的设置。我建议如果您在应用场景中没有特殊的要求,就不需要使用这些设置:

    3-3-1、 allowCoreThreadTimeOut:

    前文我们讨论到,线程池回收线程只会发生在当前线程池中线程数量大于corePoolSize参数的时候;当线程池中线程数量小于等于corePoolSize参数的时候,回收过程就会停止。

    allowCoreThreadTimeOut设置项可以要求线程池:将包括“核心线程”在内的,没有任务分配的任何线程,在等待keepAliveTime时间后全部进行回收:

    ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 10, 1, TimeUnit.MINUTES, new ArrayBlockingQueue<Runnable>(1));
    
    poolExecutor.allowCoreThreadTimeOut(true);
    • 1
    • 2
    • 3
    • 1
    • 2
    • 3

    以下是设置前的效果:

    这里写图片描述

    以下是设置后的效果:

    这里写图片描述

    3-3-2 prestartAllCoreThreads

    前文我们还讨论到,当线程池中的线程还没有达到您设置的corePoolSize参数值的时候,如果有新的任务到来,线程池将创建新的线程运行这个任务,无论之前已经创建的线程是否处于空闲状态。这个描述可以用下面的示意图表示出来:

    这里写图片描述

    prestartAllCoreThreads设置项,可以在线程池创建,但还没有接收到任何任务的情况下,先行创建符合corePoolSize参数值的线程数:

    ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 10, 1, TimeUnit.MINUTES, new ArrayBlockingQueue<Runnable>(1));
    
    poolExecutor.prestartAllCoreThreads();
    • 1
    • 2
    • 3
    • 1
    • 2
    • 3

    ================================

    (后文预告:线程基础:线程池(6)——高级特性(下))

    ThreadPoolExecutor类结构体系
    
    使用ThreadFactory
    
    线程池任务队列(重点讲解)
    
    拒绝任务
    
    扩展ThreadPoolExecutor线程池
    
        Hook methods 
    
        Queue maintenance 
    
    工具类和后记
    
        Executors
    
        Apache中的扩展
    
        与spring结合
    
     
     
  • 相关阅读:
    Dockerfile指令学习 (转)
    手机触屏滑动图片切换插件swiper.js
    基于jquery网站左侧下拉菜单
    支持移动触摸设备的简洁js幻灯片插件
    基于jquery仿天猫分类导航banner切换
    基于jQuery图像碎片切换效果插件FragmentFly
    基于jQuery在线问卷答题系统代码
    基于CSS3自定义发光radiobox单选框
    基于jQuery左右滑动切换图片代码
    基于CSS3和jQuery实现的3D相册
  • 原文地址:https://www.cnblogs.com/bigben0123/p/7060919.html
Copyright © 2011-2022 走看看