zoukankan      html  css  js  c++  java
  • 正交投影矩阵_相机中的透视投影几何——讨论相机中的正交投影

    相机中的透视投影几何——讨论相机中的正交投影,弱透视投影以及透视的一些性质

    前言

    相机中的成像其本质是从3D实体世界中的物体投影到2D成像平面上,在这个过程中存在着许多投影相关的内容,本文讨论了一些透视投影的内容,

    相机的针孔模型

    我们曾经在[1]中讨论过关于相机的针孔模型的话题,这里我们要再次提起下这个模型。针孔模型(pinhole model) 是最简单的可以成像的“设备”,然而其可以精确地得到 透视投影(Perspective Projection) 的几何信息,这里所说的透视投影,定义为:

    将三维物体的信息映射到二维平面上,称之为透视投影。( Such a mapping from three dimensions onto two dimensions is called perspective projection. )

    Fig 1.1 相机的针孔模型及其透视投影成像。

    在针孔模型中,光线通过一个无限小的孔,并且在成像平面上呈现出倒像。呈现出倒像不方便我们的分析,因此我们在分析时通常假设成像平面在焦点之前,距离同样也是焦距(未归一化之前,归一化之后距离就是1了,称之为归一化坐标系)。

    透视投影的方程

    我们需要用代数方式描述透视投影中的比例关系,如图Fig 2.1所示,根据相似三角形的知识,我们有:

    其中的

    是焦距。

    联合公式(2.1)和(2.2),我们有透视投影公式:

                                                             Fig 2.1 透视投影示意图。

    透视投影的若干性质

    多对一映射,在透视投影中,已知了投影点
    之后,其实体点
    并不是唯一的,而是存在于过焦点连线
    上的任意一点都有可能(不过要在
    之后呢,所以应该是在
    的延长射线上。)
    放缩和投影缩放。
    当一个平面或者一条直线平行于成像平面时,透视投影的影响其实就是对这个平面/直线进行了缩放(scaling)。
    当一个平面或者直线不平行于成像平面时,透视投影的会产生非线性的投影扭曲(projective distortion),可以将其分解成平行于成像平面的分量的缩放。

    焦距的若干影响

    如图Fig 2.3 所示,不同焦距有着不同的影响,我们发现,焦距越小,其视角越大,属于广角摄像头(wide-angle camera);焦距越大,其视角越小,但是分辨率会提高,属于望远镜摄像头(more telescopic)。

    Fig 2.3 不同焦距的影响。

    在透视投影中,在投影过程中,实际的平行关系通常不能保留下来,实际上,透视投影保留不了角度,距离等大部分的几何关系,但是保留了直线的“直”的这个属性。[2]

    正交透视投影

    注意到透视投影一般来说是非线性的,其不保留原始元素的大部分几何属性,比如平行,角度等,为了分析方便,我们假设当焦距无限大时,我们在成像平面上会存在一个所谓的正交投影,这个正交投影可以保留平行关系。其每个投影线都是平行的。这个称之为正交投影(orthographic projection)

    弱透视投影

     正交投影的尺度大小是和原始物体的大小一致的,当考虑的正交头像的尺度缩放时,就有了弱透视投影(weak perspective projection)

  • 相关阅读:
    ubuntu一些记录
    unittest添加测试用例方法
    弹出框处理
    无法连接终端
    Python 断言
    Appium_Python_Api文档
    pycharm快捷键
    appium运行时启动失败
    appium运行时每次默认弹出appiumsetting与unlock重装,关闭这两个步骤的方法
    SpringBoot的jar包引用外部properties文件
  • 原文地址:https://www.cnblogs.com/bile/p/15232675.html
Copyright © 2011-2022 走看看