zoukankan      html  css  js  c++  java
  • DNN拟合曲线

    本文讲解如何用DNN模型拟合一条二次曲线

    导库

    import tensorflow as tf
    from tensorflow.keras import models,layers
    import numpy as np
    import os
    import matplotlib.pyplot as plt
    

    创建训练样本并绘图

    x = np.linspace(-1,1,51)[:,np.newaxis]  # x是样本的特征,注意x是二维numpy数组,其中的每个一维数组用于存放一个样本(特征)
    noise = np.random.normal(0,0.1,size=x.shape)  # 噪声
    y = np.power(x,2) + 0.5*noise  # y是样本的标签,注意y也是二维numpy数组,其中的每个一维数组用于存放一个样本(标签)
    plt.scatter(x,y)  # 绘图
    plt.show()
    

    创建神经网络并训练

    drop_rate = 0.01
    net = models.Sequential()
    net.add(layers.Dense(50,activation='relu',input_shape=(1,)))
    net.add(layers.Dropout(drop_rate))
    net.add(layers.Dense(50,activation='relu'))
    net.add(layers.Dropout(drop_rate))
    net.add(layers.Dense(1))
    adam = tf.keras.optimizers.Adam(lr=0.01,beta_1=0.9,beta_2=0.999,amsgrad=False)
    net.compile(optimizer=adam,loss='mse')
    history = net.fit(x,y,epochs=200,batch_size=10,shuffle=True,verbose=2)
    

    神经网络预测结果绘图

    y_ = net.predict(x)
    plt.scatter(x,y)
    plt.plot(x,y_,color='r')
    plt.show()
    

    全部代码如下

    import tensorflow as tf
    from tensorflow.keras import models,layers
    import numpy as np
    import os
    import matplotlib.pyplot as plt
    
    x = np.linspace(-1,1,51)[:,np.newaxis]  # x是样本的特征,注意x是二维numpy数组,其中的每个一维数组用于存放一个样本(特征)
    noise = np.random.normal(0,0.1,size=x.shape)  # 噪声
    y = np.power(x,2) + 0.5*noise  # y是样本的标签,注意y也是二维numpy数组,其中的每个一维数组用于存放一个样本(标签)
    plt.scatter(x,y)  # 绘图
    plt.show()
    
    drop_rate = 0.01
    net = models.Sequential()
    net.add(layers.Dense(50,activation='relu',input_shape=(1,)))
    net.add(layers.Dropout(drop_rate))
    net.add(layers.Dense(50,activation='relu'))
    net.add(layers.Dropout(drop_rate))
    net.add(layers.Dense(1))
    adam = tf.keras.optimizers.Adam(lr=0.01,beta_1=0.9,beta_2=0.999,amsgrad=False)
    net.compile(optimizer=adam,loss='mse')
    history = net.fit(x,y,epochs=200,batch_size=10,shuffle=True,verbose=2)
    
    y_ = net.predict(x)
    plt.scatter(x,y)
    plt.plot(x,y_,color='r')
    plt.show()
    
  • 相关阅读:
    mac配置git和github
    更新hosts后,如何清理edge的DNS缓存
    初次运行 Git 前的配置
    mac安装homebrew
    xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools), missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun
    AJAX
    HTTP协议
    HTTP状态码大全
    SQL Servers数据库_删除
    Hello Word
  • 原文地址:https://www.cnblogs.com/bill-h/p/13902554.html
Copyright © 2011-2022 走看看