You are given n integers a1, a2, ..., an. Find the number of pairs of indexes i, j (i < j) that ai + aj is a power of 2 (i. e. some integer x exists so that ai + aj = 2x).
The first line contains the single positive integer n (1 ≤ n ≤ 105) — the number of integers.
The second line contains n positive integers a1, a2, ..., an (1 ≤ ai ≤ 109).
Print the number of pairs of indexes i, j (i < j) that ai + aj is a power of 2.
4
7 3 2 1
2
3
1 1 1
3
In the first example the following pairs of indexes include in answer: (1, 4) and (2, 4).
In the second example all pairs of indexes (i, j) (where i < j) include in answer.
题意:
给你n个数,问你有多少对满足a[i]+a[j]为2的次方.
题解:
首先,我们考虑他们能加起来的sum最多也就32个,0~2^31,所以我们对每一个a[i]都枚举sum-a[i],然后二分找这个数集里面有多少个满足条件,这里要考虑特殊的情况,如果sum-a[i]=a[i],那么你找到满足条件的个数要减1,然后最后ans要除2,因为sum-a[i]=a[j],sum-a[j]=a[i],算了2次
1 #include<bits/stdc++.h> 2 #define F(i,a,b) for(int i=a;i<=b;++i) 3 using namespace std; 4 typedef long long ll; 5 6 const int N=1e5+7; 7 int a[N]; 8 int main(){ 9 int n; 10 ll ans=0; 11 scanf("%d",&n); 12 F(i,1,n)scanf("%d",a+i); 13 sort(a+1,a+1+n); 14 F(i,1,n) 15 { 16 for(int j=30;j>=0;j--){ 17 int now=1<<j; 18 if(now<a[i])break; 19 int tmp=now-a[i]; 20 int pos1=lower_bound(a+1,a+1+n,tmp)-a; 21 int pos2=upper_bound(a+1,a+1+n,tmp)-a; 22 if(a[pos1]==tmp){ 23 ans+=pos2-pos1; 24 if(tmp==a[i])ans--; 25 } 26 } 27 } 28 ans/=2; 29 printf("%I64d ",ans); 30 return 0; 31 }