zoukankan      html  css  js  c++  java
  • CF383C Propagating tree (线段树,欧拉序)

    (tag)没开够(WA)了一发。。。
    求出(dfs)序,然后按深度分类更新与查询。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #define R(a,b,c) for(register int  a = (b); a <= (c); ++ a)
    #define nR(a,b,c) for(register int  a = (b); a >= (c); -- a)
    #define Max(a,b) ((a) > (b) ? (a) : (b))
    #define Min(a,b) ((a) < (b) ? (a) : (b))
    #define Fill(a,b) memset(a, b, sizeof(a))
    #define Abs(a) ((a) < 0 ? -(a) : (a))
    #define Swap(a,b) a^=b^=a^=b
    #define ll long long
    
    #define ON_DEBUG
    
    #ifdef ON_DEBUG
    
    #define D_e_Line printf("
    
    ----------
    
    ")
    #define D_e(x)  cout << #x << " = " << x << endl
    #define Pause() system("pause")
    #define FileOpen() freopen("in.txt","r",stdin);
    
    #else
    
    #define D_e_Line ;
    #define D_e(x)  ;
    #define Pause() ;
    #define FileOpen() ;
    
    #endif
    
    struct ios{
        template<typename ATP>ios& operator >> (ATP &x){
            x = 0; int f = 1; char c;
            for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-')  f = -1;
            while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
            x*= f;
            return *this;
        }
    }io;
    using namespace std;
    
    const int N = 200007;
    
    struct Edge{
    	int nxt, pre;
    }e[N << 1];
    int head[N], cntEdge;
    inline void add(int u, int v){
    	e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
    }
    
    int dep[N], L[N], R[N], dfnIndex;
    inline void DFS(int u, int fa){
    	dep[u] = dep[fa] + 1, L[u] = ++dfnIndex;
    	for(register int i = head[u]; i; i = e[i].nxt){
    		int v = e[i].pre;
    		if(v == fa) continue;
    		DFS(v, u);
    	}
    	R[u] = dfnIndex;
    }
    
    int val[N];
    
    #define lson rt << 1, l, mid
    #define rson rt << 1 | 1, mid + 1, r
    int t[N << 2], tag[N << 3];
    inline void Pushup(int rt){
    	t[rt] = t[rt << 1] + t[rt << 1 | 1];
    }
    inline void Pushdown(int rt, int l, int r){
    	if(!tag[rt]) return;
    	tag[rt << 1] += tag[rt];
    	tag[rt << 1 | 1] += tag[rt];
    	int mid = (l + r) >> 1;
    	t[rt << 1] += (mid - l + 1) * tag[rt];
    	t[rt << 1 | 1] += (r - mid) * tag[rt];
    	tag[rt] = 0;
    }
    inline void Updata(int rt, int l, int r, int L, int R, int w){
    	if(L <= l && r <= R){
    		tag[rt] += w;
    		t[rt] += (r - l + 1) * w;
    		return;
    	}
    	Pushdown(rt, l, r);
    	int mid = (l + r) >> 1;
    	if(L <= mid)
    		Updata(lson, L, R, w);
    	if(R > mid)
    		Updata(rson, L, R, w);
    	Pushup(rt);
    }
    inline int Query(int rt, int l, int r, int x){
    	if(l == r){
    		return t[rt];
    	}
    	Pushdown(rt, l, r);
    	int mid = (l + r) >> 1;
    	if(x <= mid)
    		return Query(lson, x);
    	else
    		return Query(rson, x);
    }
    int main(){
    //FileOpen();
    	int n, m;
    	io >> n >> m;
    	R(i,1,n){
    		io >> val[i];
    	}
    	R(i,2,n){
    		int u, v;
    		io >> u >> v;
    		add(u, v);
    		add(v, u);
    	}
    	
    	DFS(1, 0);
    	
    	while(m--){
    		int opt;
    		io >> opt;
    		if(opt == 1){
    			int x, w;
    			io >> x >> w;
    			Updata(1, 1, n, L[x], R[x], dep[x] & 1 ? w : -w);
    		}
    		else{
    			int x;
    			io >> x;
    			printf("%d
    ", val[x] + Query(1, 1, n, L[x]) * (dep[x] & 1 ? 1 : -1));
    		}
    	}
    	
    	return 0;
    }
    

  • 相关阅读:
    Cents 7 Kubernetes
    Docker registry
    centos 7 安装 docker
    ToList()所带来的性能影响
    C#之Linq、where()、FindAll()的区别
    2.2 数据库高速缓冲区
    ORACLE之autotrace使用
    spring.net简介
    初识批处理
    TIBCO Rendezvous — 技术介绍
  • 原文地址:https://www.cnblogs.com/bingoyes/p/11248642.html
Copyright © 2011-2022 走看看