zoukankan      html  css  js  c++  java
  • Johnson算法

    求多源负权最短路时用,比(floyd)快,(O(VE + V^2logV))

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <cmath>
    #include <algorithm>
    #define R(a,b,c) for(register int a = (b); a <= (c); ++a)
    #define nR(a,b,c) for(register int a = (b); a >= (c); --a)
    #define Fill(a,b) memset(a,b,sizeof(a))
    #define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
    #define QWQ
    #ifdef QWQ
    #define D_e_Line printf("
    ---------------
    ")
    #define D_e(x) cout << (#x) << " : " << x << "
    "
    #define Pause() system("pause")
    #define FileOpen() freopen("in.txt", "r", stdin)
    #define FileSave() freopen("out.txt", "w", stdout)
    #include <ctime>
    #define TIME() fprintf(stderr, "TIME : %.3lfms
    ", (double)clock() * 1.0 / (double)CLOCKS_PER_SEC)
    #endif
    struct FastIO {
    	template<typename ATP> inline FastIO& operator >> (ATP &x) {
    		x = 0; int f = 1; char c;
    		for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
    		while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
    		if(f == -1) x = -x;
    		return *this;
    	}
    } io;
    using namespace std;
    template<typename ATP> inline ATP Max(ATP x, ATP y) {
    	return x > y ? x : y;
    }
    template<typename ATP> inline ATP Min(ATP x, ATP y) {
    	return x < y ? x : y;
    }
    
    const int N = 5007;
    
    struct Edge {
    	int nxt, pre, w, from;
    } e[N << 1];
    int head[N], cntEdge;
    inline void add(int u, int v, int w) {
    	e[++cntEdge] = (Edge){ head[u], v, w, u}, head[u] = cntEdge;
    }
    
    int DIS[N][N], H[N], vis[N];
    int qq[N], h, t;
    int n, m;
    inline void SPFA(int st) {
    	for(register int i = 1; i <= n; i += 3){
    		H[i] = 0x3f3f3f3f;
    		H[i + 1] = 0x3f3f3f3f;
    		H[i + 2] = 0x3f3f3f3f;
    	}
    	H[st] = 0;
    	qq[++t] = st;
    	while(h != t){
    		int u = qq[++h];
    		if(h >= N - 5) h = 0;
    		vis[u] = false;
    		for(register int i = head[u]; i; i = e[i].nxt){
    			int v = e[i].pre;
    			if(H[v] > H[u] + e[i].w){
    				H[v] = H[u] + e[i].w;
    				if(!vis[v]){
    					vis[v] = true;
    					qq[++t] = v;
    					if(t >= N - 5) t = 0;
    				}
    			}
    		}
    	}
    }
    
    struct nod {
    	int x, w;
    	bool operator < (const nod &com) const {
    		return w > com.w;
    	}
    };
    #include <queue>
    priority_queue<nod> q;
    int dis[N];
    inline void Dijkstra(int st) {
    	for(register int i = 1; i <= n; i += 3){
    		dis[i] = 0x3f3f3f3f;
    		dis[i + 1] = 0x3f3f3f3f;
    		dis[i + 2] = 0x3f3f3f3f;
    	}
    	dis[st] = 0;
    	q.push((nod){ st, 0});
    	while(!q.empty()){
    		int u = q.top().x, w = q.top().w;
    		q.pop();
    		if(w != dis[u]) continue;
    		for(register int i = head[u]; i; i = e[i].nxt){
    			int v = e[i].pre;
    			if(dis[v] > dis[u] + e[i].w){
    				dis[v] = dis[u] + e[i].w;
    				q.push((nod){ v, dis[v]});
    			}
    		}
    	}
    }
    
    int main() {
    	io >> n >> m;
    	
    	R(i,1,m){
    		int u, v, w;
    		io >> u >> v >> w;
    		add(u, v, w);
    	}
    	
    	R(i,1,n){
    		add(0, i, 0);
    	}
    	
    	SPFA(0);
    
    	R(i,1,cntEdge){
    		e[i].w += H[e[i].from] - H[e[i].pre];
    	}
    
    	R(i,1,n){
    		Dijkstra(i);
    		R(j,1,n){
    			DIS[i][j] = dis[j] - H[i] + H[j];
    		}
    	}
    	
    	R(i,1,n){
    		R(j,1,n){
    			printf("%d ", DIS[i][j]);
    		}
    		putchar('
    ');
    	}
    	
    	return 0;
    }
    /*
    5 5
    1 2 9
    1 4 7
    2 4 -3
    2 3 11
    5 2 -2
    */
    

  • 相关阅读:
    回顾2018,展望2019
    NLog日志框架使用探究-1
    基于NetMQ的TLS框架NetMQ.Security的实现分析
    鸟哥的Linux私房菜笔记第五章,文件权限与目录配置(二)
    鸟哥的Linux私房菜笔记第五章,文件权限与目录配置(一)
    鸟哥的Linux私房菜笔记第四章
    ThinkPHP5.1 + tufanbarisyildirim 解析apk
    Java核心技术第八章——泛型程序设计(1)
    Java核心技术第五章——2.Object类
    Java核心技术第五章——1.类、超类、子类(2)
  • 原文地址:https://www.cnblogs.com/bingoyes/p/11765859.html
Copyright © 2011-2022 走看看