倍增求出祖先,( ext{DSU})统计
本来想用树剖求(K)祖,来条链复杂度就假了
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <numeric>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define MP make_pair
#ifdef QWQ
#define D_e_Line printf("
------
")
#define D_e(x) cerr << (#x) << " " << x << endl
#define C_e(x) cout << (#x) << " " << x << endl
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#define Pause() system("pause")
#include <cassert>
#define PASS fprintf(stderr, "Passing [%s] in LINE %d
",__FUNCTION__,__LINE__)
#else
#define D_e_Line
#define D_e(x)
#define C_e(x)
#define FileOpen()
#define FileSave()
#define Pause()
#define PASS
#endif
using namespace std;
struct FastIO {
template<typename ATP> inline FastIO& operator >> (ATP &x) {
x = 0; int sign = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') sign = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
if(sign == -1) x = -x;
return *this;
}
} io;
template<typename ATP> inline ATP Max(ATP x, ATP y) {
return x > y ? x : y;
}
template<typename ATP> inline ATP Min(ATP x, ATP y) {
return x < y ? x : y;
}
template<typename ATP> inline ATP Abs(ATP x) {
return x < 0 ? -x : x;
}
#include <vector>
const int N = 1e5 + 7;
struct Edge {
int nxt, pre;
} e[N];
int head[N], cntEdge;
inline void add(int u, int v) {
e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
}
vector<pair<int, int>> q[N];
int dep[N], fa[N][19], siz[N], top[N], dfn[N], dfnIdx, rnk[N], son[N];
void DFS_First(int u, int father) {
dep[u] = dep[father] + 1, fa[u][0] = father, siz[u] = 1;
R(i,1,18){
if(fa[u][i - 1]) fa[u][i] = fa[fa[u][i - 1]][i - 1];
else break;
}
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
DFS_First(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
void DFS_Second(int u, int Tp) {
top[u] = Tp, dfn[u] = ++dfnIdx, rnk[dfnIdx] = u;
if(!son[u]) return;
DFS_Second(son[u], Tp);
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v != son[u]) DFS_Second(v, v);
}
}
inline int Father(int u, int K) {
// while(dep[u] - dep[top[u]] + 1 <= K){
// K -= dep[u] - dep[top[u]] + 1;
// u = fa[top[u]];
// }
// return rnk[dfn[u] - K];
while(K){
int now = 0;
while((1 << (now + 1)) <= K) ++now;
u = fa[u][now];
K -= 1 << now;
}
return u;
}
int tot[N];
bool big[N];
void Add(int u) {
++tot[dep[u]];
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(big[v]) continue;
Add(v);
}
}
void Del(int u) {
--tot[dep[u]];
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(big[v]) continue;
Del(v);
}
}
int ans[N], n;
void DSU(int u, bool flag) {
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == son[u]) continue;
DSU(v, 0);
}
if(son[u]) DSU(son[u], 1), big[son[u]] = true;
Add(u);
for(vector<pair<int, int>>::iterator it = q[u].begin(); it != q[u].end(); ++it){
if(it->first + dep[u] <= n + 1){
ans[it->second] = tot[it->first + dep[u]] - 1;
}
}
big[son[u]] = false;
if(!flag) Del(u);
}
int main() {
int Q;
io >> n;
R(i,1,n){
int fat;
io >> fat;
++fat;
add(fat, i + 1);
}
DFS_First(1, 0);
DFS_Second(1, 1);
// while(1){
// int x, K;
// io >> x >> K;
// ++x;
// cout << Father(x, K) - 1<< endl;
// }
io >> Q;
R(i,1,Q){
int x, K;
io >> x >> K;
++x;
x = Father(x, K);
if(x == 1){
continue;
}
// D_e(x - 1);
q[x].emplace_back(K, i);
}
DSU(1, 0);
R(i,1,Q){
printf("%d ", ans[i]);
}
return 0;
}
/*
6
0 1 1 0 4 4
7
1 1
1 2
2 1
2 2
4 1
5 1
6 1
*/
/*
6
0 1 2 3 4 5
5 1
*/