zoukankan      html  css  js  c++  java
  • 堆排序

    堆是一种数据结构,最大堆性质:堆中的节点值总是不大于其父节点的值,堆是一颗完全二叉树。

      1 template<typename Item>
      2 class MaxHeap {
      3 private:
      4     Item *data;
      5     int count;
      6     int capacity;
      7     void shiftUp(int k) {//将新加入的元素与父节点依次比较,使之满足最大堆
      8         while (k>1 && data[k / 2] < data[k]) {
      9             swap(data[k / 2], data[k]);
     10             k /=2;
     11         }
     12     }
     13     void shiftDown(int k) {
     14         while (2 * k <= count) {
     15             int j = 2 * k; //在此轮循环中, data[k]和data[j]交换位置
     16             if (j + 1 <= count&&data[j] < data[j + 1])
     17                 j++;
     18             // data[j] 是 data[2*k]和data[2*k+1]中的最大值
     19             if (data[k] >= data[j])
     20                 break;
     21             swap(data[k], data[j]);
     22             k = j;//下一层
     23         }
     24 }
     26 public:
     27     MaxHeap(int capacity) {
     28         data = new Item[capacity + 1];//开辟的空间容量
     29         count = 0;//表示的是堆中的元素数目
     30         this->capacity = capacity;
     31     }
     32     MaxHeap(Item arr[], int n) {
     33         data = new Item[n + 1];
     34         capacity = n;
     35 
     36         for (int i = 0; i < n; i++)
     37             data[i + 1] = arr[i];
     38         count = n;
     39 
     40         for (int i = count / 2; i >= 1; i--)
     41             shiftDown(i);
     42     }
     43     ~MaxHeap() {
     44         delete[] data;
     45     }
     46     int size() {
     47         return count;
     48     }
     49     bool isEmpty() {
     50         return count == 0;
     51     }
     52     void insert(Item item) {
     53         assert(count + 1 <= capacity);
     54         data[count + 1] = item;
     55         shiftUp(count + 1);
     56         count++;
     57     }
     58     Item extractMax() {
     59         assert(count > 0);
     60         Item ret = data[1];
     61         swap(data[count], data[1]);
     62         count--;
     63         shiftDown(1);
     64 
     65         return ret;
     66     }
     67     Item getMax() {
     68         assert(count > 0);
     69         return data[1];
     70     } 71 };

    堆排序:利用堆将数组进行排序,堆中的根节点存储的是最大值,由此将队中的值先插入操作,再进行去除最大值放到排序数组中,heapify过程。

     1 template<typename T>
     2 void heapSort2(T arr[], int n) {
     3 
     4     MaxHeap<T> maxheap = MaxHeap<T>(arr, n);
     5     for (int i = n - 1; i >= 0; i--)
     6         arr[i] = maxheap.extractMax();
     7 
     8 }
     9 
    10 
    11 template<typename T>
    12 void heapSort1(T arr[], int n) {
    13 
    14     MaxHeap<T> maxheap = MaxHeap<T>(n);//构造一个最大堆
    15     for (int i = 0; i < n; i++)
    16         maxheap.insert(arr[i]);//将数组中的元素插入堆中
    17 
    18     for (int i = n - 1; i >= 0; i--)
    19         arr[i] = maxheap.extractMax();//将堆中元素倒序插入到数组中
    20 
    21 }
    22 //原地堆排序
    23 using namespace std;
    24 template<typename T>
    25 void __shiftDown(T arr[], int n, int k) {
    26     while (2 * k + 1 < n) {
    27         int j = 2 * k + 1;
    28         if (j + 1 < n&&arr[j + 1] > arr[j]) {
    29             j = j + 1;
    30         }
    31         if (arr[k] >= arr[j]) break;
    32         swap(arr[k], arr[j]);
    33         k = j;
    34     }
    35 }
    36 template <typename T>
    37 void heapSort(T arr[], int n) {
    38     for (int i = (n - 1) / 2; i >= 0; i--)//进行heapify操作将数组转换成堆的样子
    39         __shiftDown(arr, n, i);//找到每个非叶子节点进行shiftDown;
    40     for (int i = n - 1; i > 0; i--) {
    41         swap(arr[0], arr[i]);//将最大的元素换到数组的最后未排序部分
    42         __shiftDown(arr, i, 0);//进行shiftDown维护堆
    43     }
    44 }

    最大索引堆:堆中存储的元素是数组的索引

      1 template<typename Item>
      2 class IndexMaxHeap {
      3 private:
      4     Item *data;
      5     int *indexes;
      6     int *reverse;
      7     int count;
      8     int capacity;
      9 
     10 
     11     void shiftUp(int k) {//交换索引
     12         while (k>1 && data[indexes[k / 2]] < data[indexes[k]]) {
     13             swap(indexes[k / 2], indexes[k]);
     14             reverse[indexes[k / 2]] = k / 2;
     15             reverse[indexes[k]] = k;
     16             k /= 2;
     17         }
     18     }
     19     void shiftDown(int k) {
     20         while (2 * k <= count) {
     21             int j = 2 * k; //在此轮循环中, data[k]和data[j]交换位置
     22             if (j + 1 <= count&&data[indexes[j]] < data[indexes[j] + 1])
     23                 j++;
     24             // data[j] 是 data[2*k]和data[2*k+1]中的最大值
     25             if (data[indexes[k]] >= data[indexes[j]])
     26                 break;
     27             swap(indexes[k], indexes[j]);
     28             reverse[indexes[k]] = k ;
     29             reverse[indexes[j]] = j;
     30             k = j;//下一层
     31         }
     32 
     33     }
     34 public:
     35     IndexMaxHeap(int capacity) {
     36         data = new Item[capacity + 1];//开辟的空间容量
     37         indexes = new int[capacity + 1];//为索引开辟空间
     38         reverse = new int[capacity + 1];
     39         for (int i = 0; i <= capacity; i++)
     40             reverse[i] = 0;
     41         count = 0;//表示的是堆中的元素数目
     42         this->capacity = capacity;
     43     }
     44     
     45     ~IndexMaxHeap() {
     46         delete[] data;
     47         delete[] indexes;
     48         delete[] reverse;
     49     }
     50     int size() {
     51         return count;
     52     }
     53     bool isEmpty() {
     54         return count == 0;
     55     }
     56     void insert(int i,Item item) {
     57         assert(i + 1 >= 1 && i + 1 < capacity);
     58         assert(count + 1 <= capacity);
     59         i += 1;
     60         indexes[count + 1] = i;
     61         reverse[count + 1] = i;
     62         data[i] = item;
     63         count++;
     64         shiftUp( count );
     65         
     66     }
     67     Item extractMax() {
     68         assert(count > 0);
     69         Item ret = data[indexes[1]];
     70         swap(indexes[1], indexes[count]);
     71         reverse[indexes[count]] = 0;
     72         reverse[indexes[1]] = 1;
     73         count--;
     74         shiftDown(1);
     75 
     76         return ret;
     77     }
     78     // 传入的i对用户而言,是从0索引的
     79     int  extractMaxIndex() {
     80         assert(count > 0);
     81         int ret = indexes[1]-1;
     82         swap(indexes[1], indexes[count]);
     83         reverse[indexes[count]] = 0;
     84         reverse[indexes[1]] = 1;
     85         count--;
     86         shiftDown(1);
     87 
     88         return ret;
     89     }
     90     Item getMax(int i) {
     91         assert(count > 0);
     92         return data[indexes[1]];
     93     }
     94     int getMaxIndex() {
     95         assert(count > 0);
     96         return indexes[1] - 1;
     97     }
     98     bool contain(int i) {
     99         assert(i + 1 >= 1 && i + 1 <= capacity);
    100         return reverse[i + 1] != 0;
    101     }
    102 
    103     Item getItem(int i) {
    104         assert(contain(i));
    105         return data[i + 1];
    106     }
    107 
    108     void change(int i, Item newItem) {
    109 
    110         assert(contain(i));
    111         i += 1;
    112         data[i] = newItem;
    113 
    114         // 找到indexes[j] = i, j表示data[i]在堆中的位置
    115         // 之后shiftUp(j), 再shiftDown(j)
    116 
    117         //        for( int j = 1 ; j <= count ; j ++ )
    118         //            if( indexes[j] == i ){
    119         //                shiftUp(j);
    120         //                shiftDown(j);
    121         //                return;
    122         //            }
    123 
    124         int j = reverse[i];
    125         shiftUp(j);
    126         shiftDown(j);
    127     }
    128     // test reverse index
    129     bool testReverseIndex() {
    130 
    131         int *copyIndexes = new int[count + 1];
    132         int *copyReverseIndexes = new int[count + 1];
    133 
    134         for (int i = 0; i <= count; i++) {
    135             copyIndexes[i] = indexes[i];
    136             copyReverseIndexes[i] = reverse[i];
    137         }
    138 
    139         copyIndexes[0] = copyReverseIndexes[0] = 0;
    140         std::sort(copyIndexes, copyIndexes + count + 1);
    141         std::sort(copyReverseIndexes, copyReverseIndexes + count + 1);
    142 
    143         bool res = true;
    144         for (int i = 1; i <= count; i++)
    145             if (copyIndexes[i - 1] + 1 != copyIndexes[i] || copyReverseIndexes[i - 1] + 1 != copyReverseIndexes[i])
    146                 res = res || false;
    147 
    148         delete[] copyIndexes;
    149         delete[] copyReverseIndexes;
    150 
    151         if (!res) {
    152             cout << "Error 1" << endl;
    153             return res;
    154         }
    155 
    156         for (int i = 1; i <= count; i++)
    157             if (reverse[indexes[i]] != i) {
    158                 cout << "Error 2" << endl;
    159                 return false;
    160             }
    161 
    162         return true;
    163     }
    164 };
  • 相关阅读:
    C# 验证IP地址、Email格式、URl网址
    如何创建、安装和调试Windows服务
    C#发送Email邮件方法总结
    C#调用java类、jar包方法。
    未在本地计算机上注册“microsoft.ACE.oledb.12.0”提供程序
    在已经存在的表上创建索引
    Windows下的.NET+ Memcached安装
    把表从Access2007导出到Sql Server
    FusionCharts参数说明
    Sublime Text 3 之配置package control
  • 原文地址:https://www.cnblogs.com/bingzzzZZZ/p/8453205.html
Copyright © 2011-2022 走看看