zoukankan      html  css  js  c++  java
  • 二分查找法

    二分搜索:在一个有序的数组中将数组一分为二,根据中点值与目标值的大小缩小查找区域,递归该过程。

     1 // 二分查找法,在有序数组arr中,查找target
     2 // 如果找到target,返回相应的索引index
     3 // 如果没有找到target,返回-1
     4 template<typename T>
     5 int binarySearch(T arr[], int n, T target) {
     6     // 在arr[l...r]之中查找target
     7     int l = 0, r = n - 1;
     8     while (l <= r) {
     9 
    10         //int mid = (l + r)/2;
    11         int mid = l + (r - l) / 2;
    12         if (arr[mid] == target)
    13             return mid;
    14 
    15         if (arr[mid] > target)
    16             r = mid - 1;
    17         else
    18             l = mid + 1;
    19     }
    20 
    21     return -1;
    22 }
    23 template<typename T>
    24 int __binarySearch2(T arr[], int l, int r, T target) {
    25     if (l > r)
    26         return -1;
    27 
    28     int mid = (l + r) / 2;
    29     if (arr[mid] == target)
    30         return mid;
    31     else if (arr[mid] > target)
    32         return __binarySearch2(arr, 0, mid - 1, target);
    33     else
    34         return __binarySearch2(arr, mid + 1, r, target);
    35 }
    36 template<typename T>
    37 int binarySearch2(T arr[], int n, T target) {
    38     return __binarySearch2(arr, 0, n - 1, target);
    39 }

    二分搜索树:每个节点的左孩子小于根节点,每个节点的右孩子大于根节点

      1 //二叉搜索树,包括左孩子和右孩子,键合值
      2 template<typename Key, typename Value>
      3 class BST {
      4 private:
      5     struct Node {
      6         Key key;
      7         Value value;
      8         Node *left;
      9         Node * right;
     10         Node(Key key, Value value) {
     11             this->key = key;
     12             this->value = value;
     13             this->left = this->right = NULL;
     14         }
     15         Node(Node *node) {
     16             this->key = node->key;
     17             this->value = node->value;
     18             this->left = node->left;
     19             this->right = node->right;
     20         }
     21     };
     22     Node *root;
     23     int count;
     24 public:
     25     BST(){
     26         root = NULL;
     27         count = 0;
     28     }
     29     ~BST() {
     30         destroy(root);
     31     }
     32     int size() { return count; }
     33     bool isEmpty() {
     34         return count == 0;
     35     }
     36     void insert(Key key, Value value) {
     37         root = insert(root, key, value);
     38     }
     39     bool contain(Key key) {
     40         return contain(root, key);
     41     }
     42     Value* search(Key key) {
     43         return search(root, key);
     44     }
     45     // 前序遍历
     46     void preOrder() {
     47         preOrder(root);
     48     }
     49 
     50     // 中序遍历
     51     void inOrder() {
     52         inOrder(root);
     53     }
     54 
     55     // 后序遍历
     56     void postOrder() {
     57         postOrder(root);
     58     }
     59     // 层序遍历
     60     void levelOrder() {
     61 
     62         queue<Node*> q;
     63         q.push(root);
     64         while (!q.empty()) {
     65 
     66             Node *node = q.front();
     67             q.pop();
     68 
     69             cout << node->key << endl;
     70 
     71             if (node->left)
     72                 q.push(node->left);
     73             if (node->right)
     74                 q.push(node->right);
     75         }
     76     }
     77     // 寻找最小的键值
     78     Key minimum() {
     79         assert(count != 0);
     80         Node* minNode = minimum(root);
     81         return minNode->key;
     82     }
     83 
     84     // 寻找最大的键值
     85     Key maximum() {
     86         assert(count != 0);
     87         Node* maxNode = maximum(root);
     88         return maxNode->key;
     89     }
     90 
     91     // 从二叉树中删除最小值所在节点
     92     void removeMin() {
     93         if (root)
     94             root = removeMin(root);
     95     }
     96 
     97     // 从二叉树中删除最大值所在节点
     98     void removeMax() {
     99         if (root)
    100             root = removeMax(root);
    101     }
    102     // 从二叉树中删除键值为key的节点
    103     void remove(Key key) {
    104         root = remove(root, key);
    105     }
    106 private:
    107     // 向以node为根的二叉搜索树中,插入节点(key, value)
    108     // 返回插入新节点后的二叉搜索树的根
    109     Node* insert(Node* node, Key key, Value value) {
    110         if (node == NULL){
    111             count++;
    112             return new Node(key, value);
    113         }
    114         if (key == node->key) {
    115             node->value = value;
    116         }
    117         else if (key < node->key)
    118             node->left = insert(node->left, key, value);
    119         else    // key > node->key
    120             node->right = insert(node->right, key, value);
    121         return node;
    122     }
    123     // 查看以node为根的二叉搜索树中是否包含键值为key的节点
    124     bool contain(Node* node, Key key) {
    125 
    126         if (node == NULL)
    127             return false;
    128 
    129         if (key == node->key)
    130             return true;
    131         else if (key < node->key)
    132             return contain(node->left, key);
    133         else // key > node->key
    134             return contain(node->right, key);
    135     }
    136 
    137         // 在以node为根的二叉搜索树中查找key所对应的value
    138     Value* search(Node * node, Key key) {
    139         if (node == NULL) {
    140             return NULL;
    141         }
    142         if (key == node->key) {
    143             return &(node->value);
    144         }
    145         else if (key < node->key) {
    146             return search(node->left, key);
    147         }
    148         else {
    149             return search(node->right, key);
    150         }
    151     }
    152     void preOrder(Node * node) {
    153         if (node != NULL) {
    154             cout << node->key << endl;
    155             preOrder(node->left);
    156             preOrder(node->right);
    157         }
    158     }
    159     void inOrder(Node * node) {
    160         if (node != NULL) {
    161             preOrder(node->left);
    162             cout << node->key << endl;
    163             preOrder(node->right);
    164         }
    165     }
    166     void postOrder(Node * node) {
    167         if (node != NULL) {
    168             preOrder(node->left);
    169             preOrder(node->right);
    170             cout << node->key << endl;
    171         }
    172     }
    173     void destroy(Node* node) {
    174 
    175         if (node != NULL) {
    176             destroy(node->left);
    177             destroy(node->right);
    178             delete node;
    179             count--;
    180         }
    181     }
    182     Node* minmum(Node *node) {
    183         if (node->left == NULL) {
    184             return node;
    185         }
    186         minmum(node->left);
    187     }
    188     // 在以node为根的二叉搜索树中,返回最大键值的节点
    189     Node* maximum(Node* node) {
    190         if (node->right == NULL)
    191             return node;
    192 
    193         return maximum(node->right);
    194     }
    195     Node* removeMin(Node *node) {
    196         if (node->left == NULL) {
    197 
    198             Node* rightNode = node->right;
    199             delete node;
    200             count--;
    201             return rightNode;
    202         }
    203 
    204         node->left = removeMin(node->left);
    205         return node;
    206     }
    207     Node* removeMax(Node *node) {
    208         if (node->right == NULL) {
    209 
    210             Node* leftNode = node->left;
    211             delete node;
    212             count--;
    213             return leftNode;
    214         }
    215         node->right = removeMin(node->right);
    216         return node;
    217     }
    218     Node* remove(Node *node, Key key) {
    219         if (node == NULL) {
    220             return NULL;
    221         }
    222         if (node->key == key) {
    223             if (node->left == NULL) {//要删除节点左节点为0也就是最小值节点
    224                 Node *rightNode = node->right;
    225                 delete node;
    226                 count--;
    227                 return rightNode;
    228             }
    229             if (node->right== NULL) {//要删除节点左节点为0也就是最小值节点
    230                 Node *leftNode = node->left;
    231                 delete node;
    232                 count--;
    233                 return leftNode;
    234             }
    235             Node *successor = new Node(minmum(node->right));//找到后继节点
    236             count++;
    237             successor->right = removeMin(node->right);//删除后继位置元素,将其放到合适的位置
    238             successor->left = node->left;
    239             delete node;
    240             count--;
    241             return successor;
    242         }
    243         else if (key < node->key) {
    244             node->left = remove(node->left, key);
    245             return node;
    246         }
    247         else {
    248             node->right = remove(node->right, key);
    249             return node;
    250         }
    251 
    252         remove(node, key);
    253     }
    254 };

     1 void preOrder(Node * node) {
     2         if (node != NULL) {
     3             cout << node->key << endl;
     4             preOrder(node->left);
     5             preOrder(node->right);
     6         }
     7     }
     8     void inOrder(Node * node) {
     9         if (node != NULL) {
    10             preOrder(node->left);
    11             cout << node->key << endl;
    12             preOrder(node->right);
    13         }
    14     }
    15     void postOrder(Node * node) {
    16         if (node != NULL) {
    17             preOrder(node->left);
    18             preOrder(node->right);
    19             cout << node->key << endl;
    20         }
    21     }
  • 相关阅读:
    WordPress网站绑定多个域名的方法
    htpasswd 命令使用
    在Windows下用OpenSSL生成证书步骤
    WCF中关于List和数据的转换问题
    NET2.0的配置文件
    C# Attribute
    c#自定义属性
    VS2005中读写配置文件(方法二)
    c#的反射
    Asp.NET 操作配置文件 Steven Pei 博客园
  • 原文地址:https://www.cnblogs.com/bingzzzZZZ/p/8465862.html
Copyright © 2011-2022 走看看