96. Unique Binary Search Trees
https://leetcode.com/problems/unique-binary-search-trees/
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
/ / /
3 2 1 1 3 2
/ /
2 1 2 3
Solution
explanation: https://discuss.leetcode.com/topic/8398/dp-solution-in-6-lines-with-explanation-f-i-n-g-i-1-g-n-i
class Solution(object):
def numTrees(self, n):
"""
:type n: int
:rtype: int
"""
G = [0 for i in range(n+1)]
G[0] = G[1] = 1
for i in range(2,n+1):
for j in range(1,i+1):
G[i] += G[i-j]*G[j-1]
return G[n]
95. Unique Binary Search Trees II
https://leetcode.com/problems/unique-binary-search-trees-ii/
Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1...n.
Solution
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def generateTrees(self, n):
"""
:type n: int
:rtype: List[TreeNode]
"""
if n == 0:
return []
return self.generateSubTrees(1, n)
def generateSubTrees(self, s, e):
res = []
if s > e:
res.append(None)
return res
for i in range(s,e+1):
left = self.generateSubTrees(s,i-1)
right = self.generateSubTrees(i+1,e)
for lnode in left:
for rnode in right:
root = TreeNode(i)
root.left = lnode
root.right = rnode
res.append(root)
return res