zoukankan      html  css  js  c++  java
  • 时间复杂度

    一套图 搞懂“时间复杂度”

    写在前面:

    这篇文章是在公众号: 程序员小灰 中发布的。是我到目前为止所看到的关于时间复杂度介绍的最好的文章,清晰明了。

    所以拿来po出来 仅供学习交流,如侵则删。

    现已将此文收录至: 《数据结构》C语言版 (清华严蔚敏考研版) 全书知识梳理

    同类好文: 8种方法优雅地利用C++编程从1乘到20

                       从B站 (哔哩哔哩) 泄露的源码里发现了B站视频推荐的秘密

                       Facebook前身 哈佛“选美”网站 核心算法 --- ELO等级分制度(附源码)


    正文: 

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    640?wx_fmt=png

    时间复杂度的意义

    究竟什么是时间复杂度呢?让我们来想象一个场景:某一天,小灰和大黄同时加入了一个公司......

    640?wx_fmt=jpeg

    一天过后,小灰和大黄各自交付了代码,两端代码实现的功能都差不多。大黄的代码运行一次要花100毫秒,内存占用5MB。小灰的代码运行一次要花100秒,内存占用500MB。于是......

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    由此可见,衡量代码的好坏,包括两个非常重要的指标:

    1.运行时间;

    2.占用空间。

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    640?wx_fmt=png

    基本操作执行次数

    关于代码的基本操作执行次数,我们用四个生活中的场景,来做一下比喻:

    场景1:给小灰一条长10寸的面包,小灰每3天吃掉1寸,那么吃掉整个面包需要几天?

    640?wx_fmt=jpeg

    答案自然是 3 X 10 = 30天。

    如果面包的长度是 N 寸呢?

    此时吃掉整个面包,需要 3 X n = 3n 天。

    如果用一个函数来表达这个相对时间,可以记作 T(n) = 3n。

    场景2:给小灰一条长16寸的面包,小灰每5天吃掉面包剩余长度的一半,第一次吃掉8寸,第二次吃掉4寸,第三次吃掉2寸......那么小灰把面包吃得只剩下1寸,需要多少天呢?

    这个问题翻译一下,就是数字16不断地除以2,除几次以后的结果等于1?这里要涉及到数学当中的对数,以2位底,16的对数,可以简写为log16。

    因此,把面包吃得只剩下1寸,需要 5 X log16 = 5 X 4 = 20 天。

    如果面包的长度是 N 寸呢?

    需要 5 X logn = 5logn天,记作 T(n) = 5logn。

    场景3:给小灰一条长10寸的面包和一个鸡腿,小灰每2天吃掉一个鸡腿。那么小灰吃掉整个鸡腿需要多少天呢?

    640?wx_fmt=jpeg

    答案自然是2天。因为只说是吃掉鸡腿,和10寸的面包没有关系 。

    如果面包的长度是 N 寸呢?

    无论面包有多长,吃掉鸡腿的时间仍然是2天,记作 T(n) = 2。

    场景4:给小灰一条长10寸的面包,小灰吃掉第一个一寸需要1天时间,吃掉第二个一寸需要2天时间,吃掉第三个一寸需要3天时间.....每多吃一寸,所花的时间也多一天。那么小灰吃掉整个面包需要多少天呢?

    答案是从1累加到10的总和,也就是55天。

    如果面包的长度是 N 寸呢?

    此时吃掉整个面包,需要 1+2+3+......+ n-1 + n = (1+n)*n/2 = 0.5n^2 + 0.5n。

    记作 T(n) = 0.5n^2 + 0.5n。

    640?wx_fmt=jpeg

    上面所讲的是吃东西所花费的相对时间,这一思想同样适用于对程序基本操作执行次数的统计。刚才的四个场景,分别对应了程序中最常见的四种执行方式:

    场景1:T(n) = 3n,执行次数是线性的。

    1.  
      void eat1(int n){
    2.  
          for(int i=0; i<n; i++){;
    3.  
              System.out.println("等待一天");
    4.  
              System.out.println("等待一天");
    5.  
              System.out.println("吃一寸面包");
    6.  
          }
    7.  
      }
    8.  
      vo

    场景2:T(n) = 5logn,执行次数是对数的。

    1.  
      void eat2(int n){
    2.  
         for(int i=1; i<n; i*=2){
    3.  
             System.out.println("等待一天");
    4.  
             System.out.println("等待一天");
    5.  
             System.out.println("等待一天");
    6.  
             System.out.println("等待一天");
    7.  
             System.out.println("吃一半面包");
    8.  
         }
    9.  
      }

    场景3:T(n) = 2,执行次数是常量的。

    1.  
      void eat3(int n){
    2.  
         System.out.println("等待一天");
    3.  
         System.out.println("吃一个鸡腿");
    4.  
      }

    场景4:T(n) = 0.5n^2 + 0.5n,执行次数是一个多项式。

    1.  
      void eat4(int n){
    2.  
         for(int i=0; i<n; i++){
    3.  
             for(int j=0; j<i; j++){
    4.  
                 System.out.println("等待一天");
    5.  
             }
    6.  
             System.out.println("吃一寸面包");
    7.  
         }
    8.  
      }

    640?wx_fmt=png

    渐进时间复杂度

    有了基本操作执行次数的函数 T(n),是否就可以分析和比较一段代码的运行时间了呢?还是有一定的困难。

    比如算法A的相对时间是T(n)= 100n,算法B的相对时间是T(n)= 5n^2,这两个到底谁的运行时间更长一些?这就要看n的取值了。

    所以,这时候有了渐进时间复杂度(asymptotic time complexity)的概念,官方的定义如下:

    若存在函数 f(n),使得当n趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是T(n)的同数量级函数。

    记作 T(n)= O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

    渐进时间复杂度用大写O来表示,所以也被称为大O表示法。

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    如何推导出时间复杂度呢?有如下几个原则:

    1. 如果运行时间是常数量级,用常数1表示;

    2. 只保留时间函数中的最高阶项;

    3. 如果最高阶项存在,则省去最高阶项前面的系数。

    让我们回头看看刚才的四个场景。

    场景1:

    T(n) = 3n 

    最高阶项为3n,省去系数3,转化的时间复杂度为:

    T(n) =  O(n)

    640?wx_fmt=png

    场景2:

    T(n) = 5logn 

    最高阶项为5logn,省去系数5,转化的时间复杂度为:

    T(n) =  O(logn)

    640?wx_fmt=png

    场景3:

    T(n) = 2

    只有常数量级,转化的时间复杂度为:

    T(n) =  O(1)

    640?wx_fmt=png

    场景4:

    T(n) = 0.5n^2 + 0.5n

    最高阶项为0.5n^2,省去系数0.5,转化的时间复杂度为:

    T(n) =  O(n^2)

    640?wx_fmt=png

    这四种时间复杂度究竟谁用时更长,谁节省时间呢?稍微思考一下就可以得出结论:

    O(1)< O(logn)< O(n)< O(n^2)

    在编程的世界中有着各种各样的算法,除了上述的四个场景,还有许多不同形式的时间复杂度,比如:

    O(nlogn), O(n^3), O(m*n),O(2^n),O(n!)

    今后遨游在代码的海洋里,我们会陆续遇到上述时间复杂度的算法。

    640?wx_fmt=png

    640?wx_fmt=png

    时间复杂度的巨大差异

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    我们来举过一个栗子:

    算法A的相对时间规模是T(n)= 100n,时间复杂度是O(n)

    算法B的相对时间规模是T(n)= 5n^2,时间复杂度是O(n^2)

    算法A运行在小灰家里的老旧电脑上,算法B运行在某台超级计算机上,运行速度是老旧电脑的100倍。

    那么,随着输入规模 n 的增长,两种算法谁运行更快呢?

    640?wx_fmt=png

    从表格中可以看出,当n的值很小的时候,算法A的运行用时要远大于算法B;当n的值达到1000左右,算法A和算法B的运行时间已经接近;当n的值越来越大,达到十万、百万时,算法A的优势开始显现,算法B则越来越慢,差距越来越明显。

    这就是不同时间复杂度带来的差距。

    640?wx_fmt=jpeg

  • 相关阅读:
    字符、字符串和文本处理
    接口
    泛型
    事件
    Expression表达式树 案例
    栈帧
    属性
    方法
    常量和字段
    Dynamic
  • 原文地址:https://www.cnblogs.com/binyue-sunmk/p/12912486.html
Copyright © 2011-2022 走看看