zoukankan      html  css  js  c++  java
  • 使用panads处理数据

    	import pandas as pd
    	import numpy as np
    
    	#使用pandas读入并简单处理csv数据
    	column_names=['Sample code number', 'Clump Thickness', 'Uniformity of 
    	Cell Size', 'Uniformity of Cell shape', 'Marginal Adhesion', 'Single 
    	Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nuvleoli',
    	'Mitoses', 'Class']
    
    	data=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data', 
    	names=column_names)
    
    	data=data.replace(to_replace='?', value=np.nan)
    	data=data.dropna(how='any')
    	data.shape
    
    	#准备训练、测试数据
    	from sklearn.cross_validation import train_test_split
    	x_train, x_test, y_train, y_test=train_test_split(data[colum_names[1:
    	10]], data[column_names[10]], test_size=0.25, random_state=33)
    	y_train.value_counts()
    
  • 相关阅读:
    IT知识构架与操作系统简介
    read与for循环语句
    shell基础练习题
    shell 100以内加法
    shell
    python学习第一日
    shell脚本基本介绍
    bash的基本特性
    Linux习题
    Linux基本命令
  • 原文地址:https://www.cnblogs.com/bitbitbyte/p/12536638.html
Copyright © 2011-2022 走看看