zoukankan      html  css  js  c++  java
  • 神经网络梯度爆炸、消失问题、门控循环单元GRU、长短期记忆LSTM

    1. nn:w比1大,会造成激活函数、梯度爆炸。w比1小,梯度会消失。随机化初始权重有助于解决这个问题。
    2. RNN同样有梯度消失问题,反向传播时后面的梯度很难传到前面的层,从而影响到前面的层的计算。梯度爆炸会发生数值溢出,可以通过修剪、缩放来解决。
    3. GRU:记忆细胞C<t>的作用是提供记忆的能力。候选值C^<t>重写记忆细胞。更新门Γu是一个介于0和1之间的数,决定是否更新记忆细胞。相关Γr代表候选值和记忆细胞的相关性。
    4. LSTM:更新门,遗忘门,输出门。更新门和遗忘门给了记忆细胞选择权去维持旧的值和更新新的值。偷窥孔连接其实就是三个门值不仅取决于a<t-1>,x<t>,还取决于c<t-1>.
    5. GRU简单点,适合创建大型结构,计算性能快。LSTM更灵活,大多数人还是会选择LSTM。
  • 相关阅读:
    BZOJ
    Codeforces
    GYM
    UOJ
    Java集合之Queue
    【HIHOCODER 1478】 水陆距离(BFS)
    Java集合之Stack
    Java集合之Vector
    Java多线程入门Ⅱ
    【HIHOCODER 1604】股票价格II(堆)
  • 原文地址:https://www.cnblogs.com/biwangwang/p/11432803.html
Copyright © 2011-2022 走看看