zoukankan      html  css  js  c++  java
  • 小马哥课堂-统计学-无偏估计

    定义引入

    以之前的200,000苹果的重量为例,200,000苹果(或者更多)的重量都统计出来,不太现实。但我们可以先随机抽取100个苹果(作为一个样本),统计这100个苹果的平均重量,记为(overline X_1)。如果只是把(overline X_1)作为总体的平均值,肯定是不准确的,因为再次随机抽取100个苹果,计算出的重量的平均值和(overline X_1)肯定就不一样了。那么,为了使统计结果更加准确,我们需要反复抽取多次,然后分别计算出每个样本的平均值,分别记为:(overline X_1,overline X_2, overline X_3,cdots overline X_k),接着把这些数据再做平均,记为:(E(overline X))。那么,随着反复抽样次数的增多,(E(overline X))会趋于总体期望。如果(E(overline X)=mu)成立,那么(E(overline X))就是总体期望(mu)的无偏估计。

    定义

    无偏估计是用样本统计量来估计总体参数时的一种无偏推断。估计量的数学期望等于被估计参数的真实值,则称此估计量为被估计参数的无偏估计,即具有无偏性,是一种用于评价估计量优良性的准则。无偏估计的意义是:在多次重复下,它们的平均数接近所估计的参数真值。

    In statistics, the bias (or bias function) of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. Otherwise the estimator is said to be biased.

    样本方差无偏性的证明

    总体期望:(mu)

    总体方差:$ Var(x)=sigma^2=frac{1}{n} cdot displaystylesum_{i=1}^n (x_i-mu)^2$

    样本均值: (overline x=frac{1}{n} cdot displaystylesum_{i=1}^n x_i)

    样本方差: (S^2=frac{1}{n-1}cdot displaystylesum_{i=1}^n (x_i-overline x)^2)

    为什么 要除以n-1, 才使得 样本方差 是 总体方差 的无偏估计?为什么除以n,样本方差比总体方差的值偏小?为什么要调大样本方差是除以n-1,而不是n-2,n-3或者其他数?

    假设,样本方差定义为:(S^2=frac{1}{n}cdot displaystylesum_{i=1}^n (x_i-overline x)^2),根据无偏估计的定义:(E(S^2)=sigma^2),那么

    [egin{array}{rcl} E[S^2]&=&E[frac{1}{n}cdot displaystylesum_{i=1}^n (x_i-overline x)^2] \ &=&E[frac{1}{n}cdot displaystylesum_{i=1}^n [(x_i-mu)+(mu-overline x)]^2] \ &=& E[frac{1}{n}cdotdisplaystylesum_{i=1}^n [(x_i-mu)^2+2(x_i-mu)(mu-overline x)+(mu-overline x)^2]] \&=& E[frac{1}{n}cdotdisplaystylesum_{i=1}^n (x_i-mu)^2]+E[frac{2}{n} cdot displaystylesum_{i=1}^n(x_i-mu)(mu-overline x)] + E[frac{1}{n}cdotsum_{i=1}^n(mu-overline x)^2] qquad (1)\ &=& E[frac{1}{n}cdotdisplaystylesum_{i=1}^n (x_i-mu)^2]+ end{array} ]

    [egin{array}{rcl} frac{2}{n}cdotdisplaystylesum_{i=1}^n(x_i-mu)(mu-overline x) &=&frac{2}{n}cdot(mu-overline x)cdotdisplaystylesum_{i=1}^n(x_i-mu) \ &=&2cdot(mu-overline x)cdot frac{1}{n}displaystylesum_{i=1}^n(x_i-mu) qquad (overline x=frac{1}{n} cdot displaystylesum_{i=1}^n x_i) \&=&2cdot(mu-overline x)cdot(overline x-mu) end{array} ]

    [egin{array}{rcl} E[S^2]&=&E[frac{1}{n}cdotdisplaystylesum_{i=1}^n (x_i-mu)^2]+E[frac{2}{n} cdot displaystylesum_{i=1}^n(x_i-mu)(mu-overline x)] + E[frac{1}{n}cdotsum_{i=1}^n(mu-overline x)^2] qquad (1)\ &=& E[frac{1}{n}cdotdisplaystylesum_{i=1}^n (x_i-mu)^2]-E[2(overline x - mu)^2] + E[(mu-overline x)^2] qquad ext{,根据期望的性质E[C]=C} \ &=&E[frac{1}{n}cdotdisplaystylesum_{i=1}^n (x_i-mu)^2] - E[(mu-overline x)^2] qquad (2)end{array} ]

    根据总体方差的定义:(Var(x)=sigma^2=frac{1}{n} cdot displaystylesum_{i=1}^n (x_i-mu)^2)
    总体x服从(N(mu,sigma^2))
    样本均值(overline x)的抽样分布服从(N(mu, frac{sigma^2}{n})),那么(E[S^2]=E[sigma^2]-E[(mu-overline x)^2]= sigma^2-frac{sigma^2}{n}=frac{n-1}{n}cdotsigma^2<sigma^2)
    所以当样本方差的分母是n时,样本方差总小于总体方差。如果我们将分母n替换为n-1,似乎就是无偏估计了,那么,到底是不是这样呢,下面再推导一遍:

    我们知道,样本方差: (S^2=frac{1}{n-1}cdot displaystylesum_{i=1}^n (x_i-overline x)^2)

    [egin{array}{rcl} E[S^2]&=&E[frac{1}{n-1}cdot displaystylesum_{i=1}^n (x_i-overline x)^2] \ &=&E[frac{1}{n-1}cdot displaystylesum_{i=1}^n [(x_i-mu)+(mu-overline x)]^2] \ &=& E[frac{1}{n-1}cdotdisplaystylesum_{i=1}^n [(x_i-mu)^2+2(x_i-mu)(mu-overline x)+(mu-overline x)^2]] \&=& E[frac{1}{n-1}cdotdisplaystylesum_{i=1}^n (x_i-mu)^2]+E[frac{2}{n-1} cdot displaystylesum_{i=1}^n(x_i-mu)(mu-overline x)] + E[frac{1}{n-1}cdotsum_{i=1}^n(mu-overline x)^2] qquad (3)\ &=& end{array} ]

    [egin{array}{rcl} frac{2}{n-1}cdotdisplaystylesum_{i=1}^n(x_i-mu)(mu-overline x) &=&frac{2}{n-1}cdot(mu-overline x)cdotdisplaystylesum_{i=1}^n(x_i-mu) \ &=&frac{2}{n-1}cdot(mu-overline x)cdot frac{n}{n}displaystylesum_{i=1}^n(x_i-mu) qquad (overline x=frac{1}{n} cdot displaystylesum_{i=1}^n x_i) \&=&frac{2n}{n-1}cdot(mu-overline x)cdot(overline x-mu) end{array} ]

    [egin{array}{rcl} E[S^2]&=&E[frac{1}{n-1}cdotdisplaystylesum_{i=1}^n (x_i-mu)^2]+E[frac{2n}{n-1} cdot displaystylesum_{i=1}^n(x_i-mu)(mu-overline x)] + E[frac{1}{n-1}cdotsum_{i=1}^n(mu-overline x)^2] qquad (1)\ &=& E[frac{1}{n-1}cdotdisplaystylesum_{i=1}^n (x_i-mu)^2]-frac{2n}{n-1}E[(overline x - mu)^2] + frac{n}{n-1}E[(mu-overline x)^2] qquad ext{,根据期望的性质E[C]=C} \ &=&frac{n}{n-1}cdot E[frac{1}{n}cdotdisplaystylesum_{i=1}^n (x_i-mu)^2] -frac{n}{n-1} E[(mu-overline x)^2] qquad \&=&frac{n}{n-1}cdotsigma^2-frac{n}{n-1}cdotfrac{sigma^2}{n} \ &=&frac{n-1}{n-1}cdotsigma^2end{array} ]

    所以呢,(E[S^2]=sigma^2),(S^2=frac{1}{n-1}cdot displaystylesum_{i=1}^n (x_i-overline x)^2)是总体方差的无偏估计。

    贝塞尔校正(Bessel's correction)

    通常,(frac{1}{n-1})称为贝塞尔校正系数。有的文献上也将(frac{n}{n-1})也称为贝塞尔校正系数

    In statisticsBessel's correction is the use of n − 1 instead of n in the formula for the sample variance and sample standard deviation, where n is the number of observations in a sample.This method corrects the bias in the estimation of the population variance. It also partially corrects the bias in the estimation of the population standard deviation.

  • 相关阅读:
    Nancy之静态文件处理
    Nancy之基于Self Hosting的补充小Demo
    Nancy之基于Nancy.Owin的小Demo
    Nancy之基于Nancy.Hosting.Self的小Demo
    Nancy之基于Nancy.Hosting.Aspnet的小Demo
    UEditor 1.4.3.1.NET版本上传配置备忘录
    ASP.NET MVC使用SSI来实现页面静态化
    CentOS7上让Jexus开机自启动
    遗传算法的简单应用-巡回旅行商(TSP)问题的求解
    遗传算法的简单应用-求解方程
  • 原文地址:https://www.cnblogs.com/black-mamba/p/9482398.html
Copyright © 2011-2022 走看看