zoukankan      html  css  js  c++  java
  • Drainage Ditches

    题目链接

    • 题意:
      n个点。m条边,求1点到n点的最大流
      N (0 <= N <= 200) and M (2 <= M <= 200).
    struct Edge
    {
        int from, to, cap, flow;
        bool operator< (const Edge& rhs) const
        {
            return from < rhs.from || (from == rhs.from && to < rhs.to);
        }
    };
    
    const int MAXV = 210;
    struct ISAP
    {
        int n, m, s, t;
        vector<Edge> edges;
        vector<int> G[MAXV];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
        bool vis[MAXV];        // BFS使用
        int d[MAXV];           // 从起点到i的距离
        int cur[MAXV];        // 当前弧指针
        int p[MAXV];          // 可增广路上的上一条弧
        int num[MAXV];        // 距离标号计数
    
        void AddEdge(int from, int to, int cap)
        {
            edges.push_back((Edge) { from, to, cap, 0 });
            edges.push_back((Edge) { to, from, 0, 0 });
            m = edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
    
        bool BFS()
        {
            memset(vis, 0, sizeof(vis));
            queue<int> Q;
            Q.push(t);
            vis[t] = 1;
            d[t] = 0;
            while(!Q.empty())
            {
                int x = Q.front();
                Q.pop();
                REP(i, G[x].size())
                {
                    Edge& e = edges[G[x][i]^1];
                    if(!vis[e.from] && e.cap > e.flow)
                    {
                        vis[e.from] = 1;
                        d[e.from] = d[x] + 1;
                        Q.push(e.from);
                    }
                }
            }
            return vis[s];
        }
    
        void ClearAll(int n)
        {
            this->n = n;
            REP(i, n)
                G[i].clear();
            edges.clear();
        }
    
        void ClearFlow()
        {
            REP(i, edges.size())
                edges[i].flow = 0;
        }
    
        int Augment()
        {
            int x = t, a = INF;
            while(x != s)
            {
                Edge& e = edges[p[x]];
                a = min(a, e.cap-e.flow);
                x = edges[p[x]].from;
            }
            x = t;
            while(x != s)
            {
                edges[p[x]].flow += a;
                edges[p[x]^1].flow -= a;
                x = edges[p[x]].from;
            }
            return a;
        }
    
        int Maxflow(int s, int t, int need)
        {
            this->s = s;
            this->t = t;
            int flow = 0;
            BFS();
            memset(num, 0, sizeof(num));
            REP(i, n) num[d[i]]++;
            int x = s;
            memset(cur, 0, sizeof(cur));
            while(d[s] < n)
            {
                if(x == t)
                {
                    flow += Augment();
                    if(flow >= need) return flow;
                    x = s;
                }
                int ok = 0;
                FF(i, cur[x], G[x].size())
                {
                    Edge& e = edges[G[x][i]];
                    if(e.cap > e.flow && d[x] == d[e.to] + 1)   // Advance
                    {
                        ok = 1;
                        p[e.to] = G[x][i];
                        cur[x] = i; // 注意
                        x = e.to;
                        break;
                    }
                }
                if(!ok)   // Retreat
                {
                    int m = n-1; // 初值注意
                    REP(i, G[x].size())
                    {
                        Edge& e = edges[G[x][i]];
                        if(e.cap > e.flow)
                            m = min(m, d[e.to]);
                    }
                    if(--num[d[x]] == 0)
                        break;
                    num[d[x] = m + 1]++;
                    cur[x] = 0; // 注意
                    if(x != s)
                        x = edges[p[x]].from;
                }
            }
            return flow;
        }
    
        vector<int> Mincut()   // call this after maxflow
        {
            BFS();
            vector<int> ans;
            REP(i, edges.size())
            {
                Edge& e = edges[i];
                if(!vis[e.from] && vis[e.to] && e.cap > 0)
                    ans.push_back(i);
            }
            return ans;
        }
    
        void Reduce()
        {
            REP(i, edges.size())
                edges[i].cap -= edges[i].flow;
        }
    
        void print()
        {
            printf("Graph:
    ");
            REP(i, edges.size())
                printf("%d->%d, %d, %d
    ", edges[i].from, edges[i].to , edges[i].cap, edges[i].flow);
        }
    } mf;
    
    int main()
    {
        int n, m, a, b, v;
        while (~RII(m, n))
        {
            mf.ClearAll(n);
            REP(i, m)
            {
                RIII(a, b, v); a--; b--;
                mf.AddEdge(a, b, v);
            }
            WI(mf.Maxflow(0, n - 1, INF));
        }
        return 0;
    }


  • 相关阅读:
    L347
    2019.4.22 英语阅读
    L345 大脑复生
    L343 中译英
    L342 Air Pollution Is Doing More Than Just Slowly Killing Us
    Is It Always a Good Idea to Reach Outside Your Comfort Zone?
    2019.4月 商务英语场景
    元器件横截面-这里有很多专业词汇
    python 列表和元组 还有range
    python 基本数据类型简介intstr bool
  • 原文地址:https://www.cnblogs.com/blfbuaa/p/6738585.html
Copyright © 2011-2022 走看看