题目链接
- 题意:
n个点。m条边,求1点到n点的最大流
N (0 <= N <= 200) and M (2 <= M <= 200).
struct Edge
{
int from, to, cap, flow;
bool operator< (const Edge& rhs) const
{
return from < rhs.from || (from == rhs.from && to < rhs.to);
}
};
const int MAXV = 210;
struct ISAP
{
int n, m, s, t;
vector<Edge> edges;
vector<int> G[MAXV]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[MAXV]; // BFS使用
int d[MAXV]; // 从起点到i的距离
int cur[MAXV]; // 当前弧指针
int p[MAXV]; // 可增广路上的上一条弧
int num[MAXV]; // 距离标号计数
void AddEdge(int from, int to, int cap)
{
edges.push_back((Edge) { from, to, cap, 0 });
edges.push_back((Edge) { to, from, 0, 0 });
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS()
{
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(t);
vis[t] = 1;
d[t] = 0;
while(!Q.empty())
{
int x = Q.front();
Q.pop();
REP(i, G[x].size())
{
Edge& e = edges[G[x][i]^1];
if(!vis[e.from] && e.cap > e.flow)
{
vis[e.from] = 1;
d[e.from] = d[x] + 1;
Q.push(e.from);
}
}
}
return vis[s];
}
void ClearAll(int n)
{
this->n = n;
REP(i, n)
G[i].clear();
edges.clear();
}
void ClearFlow()
{
REP(i, edges.size())
edges[i].flow = 0;
}
int Augment()
{
int x = t, a = INF;
while(x != s)
{
Edge& e = edges[p[x]];
a = min(a, e.cap-e.flow);
x = edges[p[x]].from;
}
x = t;
while(x != s)
{
edges[p[x]].flow += a;
edges[p[x]^1].flow -= a;
x = edges[p[x]].from;
}
return a;
}
int Maxflow(int s, int t, int need)
{
this->s = s;
this->t = t;
int flow = 0;
BFS();
memset(num, 0, sizeof(num));
REP(i, n) num[d[i]]++;
int x = s;
memset(cur, 0, sizeof(cur));
while(d[s] < n)
{
if(x == t)
{
flow += Augment();
if(flow >= need) return flow;
x = s;
}
int ok = 0;
FF(i, cur[x], G[x].size())
{
Edge& e = edges[G[x][i]];
if(e.cap > e.flow && d[x] == d[e.to] + 1) // Advance
{
ok = 1;
p[e.to] = G[x][i];
cur[x] = i; // 注意
x = e.to;
break;
}
}
if(!ok) // Retreat
{
int m = n-1; // 初值注意
REP(i, G[x].size())
{
Edge& e = edges[G[x][i]];
if(e.cap > e.flow)
m = min(m, d[e.to]);
}
if(--num[d[x]] == 0)
break;
num[d[x] = m + 1]++;
cur[x] = 0; // 注意
if(x != s)
x = edges[p[x]].from;
}
}
return flow;
}
vector<int> Mincut() // call this after maxflow
{
BFS();
vector<int> ans;
REP(i, edges.size())
{
Edge& e = edges[i];
if(!vis[e.from] && vis[e.to] && e.cap > 0)
ans.push_back(i);
}
return ans;
}
void Reduce()
{
REP(i, edges.size())
edges[i].cap -= edges[i].flow;
}
void print()
{
printf("Graph:
");
REP(i, edges.size())
printf("%d->%d, %d, %d
", edges[i].from, edges[i].to , edges[i].cap, edges[i].flow);
}
} mf;
int main()
{
int n, m, a, b, v;
while (~RII(m, n))
{
mf.ClearAll(n);
REP(i, m)
{
RIII(a, b, v); a--; b--;
mf.AddEdge(a, b, v);
}
WI(mf.Maxflow(0, n - 1, INF));
}
return 0;
}