Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/
___2__ ___8__
/ /
0 _4 7 9
/
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and
8 is 6. Another example is LCA of nodes 2 and
4 is 2, since a node can be a descendant of itself according to the LCA definition.
分析:
在二叉查找树种,寻找两个节点的最低公共祖先。
1、假设a、b都比根节点小,则在左子树中递归查找公共节点。
2、假设a、b都比根节点大。则在右子树中查找公共祖先节点。
3、假设a、b一个比根节点大。一个比根节点小,或者有一个等于根节点,则根节点即为最低公共祖先。
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root == NULL) {
return NULL;
}
int min = (p->val > q->val ? q->val:p->val);
int max = (p->val > q->val ? p->val: q->val);
if(max < root->val)
return lowestCommonAncestor(root->left, p, q);
if (min > root->val) {
return lowestCommonAncestor(root->right, p, q);
}
return root;
}
};