题目大意:给定n个点,求一个最大的矩形,该矩形的四个顶点在给定的点上
找矩形的方法是记录全部线段 若两条线段长度相等且中点重合 这两条线段就能够成为矩形的对角线
于是我们找到全部n*(n-1)/2条线段。按长度排序,长度相等依照中点排序,然后对于每一个点向前找符合要求的,计算面积。更新ans
注意避免一切double!
长度切记不能开根号。直接用long long存储,否则第三个点有两条长度极其接近的线段把double卡掉,计算面积要用叉积,中点不要除以2,连math库都不用开了!
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 1600 using namespace std; typedef long long ll; struct point{ ll x,y; point(){} point(ll _,ll __):x(_),y(__){} bool operator == (const point &Y) const { return x==Y.x && y==Y.y ; } point operator - (const point &Y) const { return point(x-Y.x,y-Y.y); } ll operator * (const point &Y) const { return x*Y.y-Y.x*y; } }points[M]; struct line{ ll len; point *p1,*p2; point midpoint; bool operator < (const line &y) const { if( len == y.len ) { if( midpoint.x == y.midpoint.x ) return midpoint.y < y.midpoint.y; return midpoint.x < y.midpoint.x; } return len < y.len; } }lines[M*M>>1]; inline ll Distance(const point &p1,const point &p2) { return (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y) ; } ll lllabs(ll x) { return x<0?-x:x; } int n,tot; ll ans; int main() { int i,j; cin>>n; for(i=1;i<=n;i++) { scanf("%lld%lld",&points[i].x,&points[i].y); for(j=1;j<i;j++) { lines[++tot].len=Distance(points[i],points[j]); lines[tot].p1=&points[i]; lines[tot].p2=&points[j]; lines[tot].midpoint=point(points[i].x+points[j].x,points[i].y+points[j].y); } } sort(lines+1,lines+tot+1); for(i=1;i<=tot;i++) for(j=i-1; j && lines[i].len==lines[j].len && lines[i].midpoint==lines[j].midpoint ;j--) ans=max( ans , lllabs( ( (*lines[i].p1)-(*lines[j].p1) )*( (*lines[i].p1)-(*lines[j].p2) ) ) ); cout<<ans<<endl; }