zoukankan      html  css  js  c++  java
  • HDU 4912 lca贪心

    Paths on the tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 297    Accepted Submission(s): 93


    Problem Description
    bobo has a tree, whose vertices are conveniently labeled by 1,2,…,n.

    There are m paths on the tree. bobo would like to pick some paths while any two paths do not share common vertices.

    Find the maximum number of paths bobo can pick.
     

    Input
    The input consists of several tests. For each tests:

    The first line contains n,m (1≤n,m≤105). Each of the following (n - 1) lines contain 2 integers ai,bi denoting an edge between vertices ai and bi (1≤ai,bi≤n). Each of the following m lines contain 2 integers ui,vi denoting a path between vertices ui and vi (1≤ui,vi≤n).
     

    Output
    For each tests:

    A single integer, the maximum number of paths.
     

    Sample Input
    3 2 1 2 1 3 1 2 1 3 7 3 1 2 1 3 2 4 2 5 3 6 3 7 2 3 4 5 6 7
     

    Sample Output
    1 2
     

    Author
    Xiaoxu Guo (ftiasch)


    一棵树,给出m条路径,然后问最多选择多少条路径,使得每两条路径之间没有 不论什么公共点,公共边。

    把m条路径求出lca,然后依照lca深度从大到小排序,把路径上经过的点标记出来,贪心就可以。

    代码:

    #include <stdio.h>
    #include <iostream>
    #include <algorithm>
    #include <sstream>
    #include <stdlib.h>
    #include <string.h>
    #include <limits.h>
    #include <string>
    #include <time.h>
    #include <math.h>
    #include <queue>
    #include <stack>
    #include <set>
    #include <map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define eps 1e-8
    #define pi acos(-1.0)
    typedef long long ll;
    const int maxn=100010;
    int head[maxn],tol,fa[maxn][20],dep[maxn];
    struct Edge{
        int next,to;
        Edge(int _next=0,int _to=0){
            next=_next;to=_to;
        }
    }edge[10*maxn];
    void addedge(int u,int v){
        edge[tol]=Edge(head[u],v);
        head[u]=tol++;
    }
    void bfs(int s){
        queue<int> q;
        dep[s]=0,fa[s][0]=s;
        q.push(s);
        while(!q.empty()){
            int u=q.front();
            q.pop();
            for(int i=1;i<20;i++)fa[u][i]=fa[fa[u][i-1]][i-1];
            for(int i=head[u];i!=-1;i=edge[i].next){
                int v=edge[i].to;
                if(v==fa[u][0])continue;
                fa[v][0]=u;
                dep[v]=dep[u]+1;
                q.push(v);
            }
        }
    }
    int LCA(int x,int y){
        if(dep[x]<dep[y])swap(x,y);
        for(int i=19;i>=0;i--)if((1<<i)&(dep[x]-dep[y]))x=fa[x][i];
        if(x==y)return x;
        for(int i=19;i>=0;i--)if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
        return fa[x][0];
    }
    struct QQ{
        int u,v,lca;
    }pp[100100];
    bool vis[100100];
    int n,m;
    bool cmp(QQ a,QQ b){
        return dep[a.lca]>dep[b.lca];
    }
    int main()
    {
        while(~scanf("%d%d",&n,&m)){
            memset(head,-1,sizeof(head));
            tol=0;
            for(int i=1;i<n;i++){
                int u,v;
                scanf("%d%d",&u,&v);
                addedge(u,v);
                addedge(v,u);
            }
            bfs(1);
            for(int i=0;i<m;i++){
                scanf("%d%d",&pp[i].u,&pp[i].v);
                pp[i].lca=LCA(pp[i].u,pp[i].v);
            }
            sort(pp,pp+m,cmp);
            memset(vis,0,sizeof(vis));
            int ans=0;
            for(int i=0;i<m;i++){
                int lca=pp[i].lca,flag=1,u=pp[i].u,v=pp[i].v;
                if(vis[u]||vis[v]||vis[lca])continue;
                for(int j=u;j!=lca;j=fa[j][0])
                    if(vis[j]){
                        flag=0;break;
                    }
                for(int j=v;j!=lca;j=fa[j][0])
                    if(vis[j]){
                        flag=0;break;
                    }
                if(!flag)continue;
                ans++;
                vis[lca]=1;
                for(int j=u;j!=lca;j=fa[j][0])vis[j]=1;
                for(int j=v;j!=lca;j=fa[j][0])vis[j]=1;
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
    
    


  • 相关阅读:
    Problem S: 分数类的模板数组类
    Problem E: 向量的运算
    Problem D: 强悍的矩阵运算来了
    Problem C: Person类与Student类的关系
    Problem B: 还会用继承吗?
    Problem A: 求个最大值
    Problem B: 数组类(II)
    树的直径题集
    LCA题集
    线段树总结
  • 原文地址:https://www.cnblogs.com/blfbuaa/p/6907833.html
Copyright © 2011-2022 走看看