zoukankan      html  css  js  c++  java
  • C语言获取文件SHA1哈希

    安全散列算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)它定义了数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息。SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要能够用来验证数据的完整性。

    在传输的过程中。数据非常可能会发生变化,那么这时候就会产生不同的消息摘要。

    SHA1有例如以下特性:不能够从消息摘要中复原信息。两个不同的消息不会产生相同的消息摘要。

    SHA1 C语言实现

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <assert.h>
    #include <errno.h>
    
    #undef BIG_ENDIAN_HOST
    typedef unsigned int u32;
    
    /****************
    * Rotate a 32 bit integer by n bytes
    */
    #if defined(__GNUC__) && defined(__i386__)
    static inline u32
    	rol( u32 x, int n)
    {
    	__asm__("roll %%cl,%0"
    		:"=r" (x)
    		:"0" (x),"c" (n));
    	return x;
    }
    #else
    #define rol(x,n) ( ((x) << (n)) | ((x) >> (32-(n))) )
    #endif
    
    
    typedef struct {
    	u32  h0,h1,h2,h3,h4;
    	u32  nblocks;
    	unsigned char buf[64];
    	int  count;
    } SHA1_CONTEXT;
    
    
    
    void
    	sha1_init( SHA1_CONTEXT *hd )
    {
    	hd->h0 = 0x67452301;
    	hd->h1 = 0xefcdab89;
    	hd->h2 = 0x98badcfe;
    	hd->h3 = 0x10325476;
    	hd->h4 = 0xc3d2e1f0;
    	hd->nblocks = 0;
    	hd->count = 0;
    }
    
    
    /****************
    * Transform the message X which consists of 16 32-bit-words
    */
    static void
    	transform( SHA1_CONTEXT *hd, unsigned char *data )
    {
    	u32 a,b,c,d,e,tm;
    	u32 x[16];
    
    	/* get values from the chaining vars */
    	a = hd->h0;
    	b = hd->h1;
    	c = hd->h2;
    	d = hd->h3;
    	e = hd->h4;
    
    #ifdef BIG_ENDIAN_HOST
    	memcpy( x, data, 64 );
    #else
    	{
    		int i;
    		unsigned char *p2;
    		for(i=0, p2=(unsigned char*)x; i < 16; i++, p2 += 4 ) 
    		{
    			p2[3] = *data++;
    			p2[2] = *data++;
    			p2[1] = *data++;
    			p2[0] = *data++;
    		}
    	}
    #endif
    
    
    #define K1  0x5A827999L
    #define K2  0x6ED9EBA1L
    #define K3  0x8F1BBCDCL
    #define K4  0xCA62C1D6L
    #define F1(x,y,z)   ( z ^ ( x & ( y ^ z ) ) )
    #define F2(x,y,z)   ( x ^ y ^ z )
    #define F3(x,y,z)   ( ( x & y ) | ( z & ( x | y ) ) )
    #define F4(x,y,z)   ( x ^ y ^ z )
    
    
    #define M(i) ( tm =   x[i&0x0f] ^ x[(i-14)&0x0f] 
    	^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f] 
    	, (x[i&0x0f] = rol(tm,1)) )
    
    #define R(a,b,c,d,e,f,k,m)  do { e += rol( a, 5 )     
    	+ f( b, c, d )  
    	+ k	      
    	+ m;	      
    	b = rol( b, 30 );    
    	} while(0)
    	R( a, b, c, d, e, F1, K1, x[ 0] );
    	R( e, a, b, c, d, F1, K1, x[ 1] );
    	R( d, e, a, b, c, F1, K1, x[ 2] );
    	R( c, d, e, a, b, F1, K1, x[ 3] );
    	R( b, c, d, e, a, F1, K1, x[ 4] );
    	R( a, b, c, d, e, F1, K1, x[ 5] );
    	R( e, a, b, c, d, F1, K1, x[ 6] );
    	R( d, e, a, b, c, F1, K1, x[ 7] );
    	R( c, d, e, a, b, F1, K1, x[ 8] );
    	R( b, c, d, e, a, F1, K1, x[ 9] );
    	R( a, b, c, d, e, F1, K1, x[10] );
    	R( e, a, b, c, d, F1, K1, x[11] );
    	R( d, e, a, b, c, F1, K1, x[12] );
    	R( c, d, e, a, b, F1, K1, x[13] );
    	R( b, c, d, e, a, F1, K1, x[14] );
    	R( a, b, c, d, e, F1, K1, x[15] );
    	R( e, a, b, c, d, F1, K1, M(16) );
    	R( d, e, a, b, c, F1, K1, M(17) );
    	R( c, d, e, a, b, F1, K1, M(18) );
    	R( b, c, d, e, a, F1, K1, M(19) );
    	R( a, b, c, d, e, F2, K2, M(20) );
    	R( e, a, b, c, d, F2, K2, M(21) );
    	R( d, e, a, b, c, F2, K2, M(22) );
    	R( c, d, e, a, b, F2, K2, M(23) );
    	R( b, c, d, e, a, F2, K2, M(24) );
    	R( a, b, c, d, e, F2, K2, M(25) );
    	R( e, a, b, c, d, F2, K2, M(26) );
    	R( d, e, a, b, c, F2, K2, M(27) );
    	R( c, d, e, a, b, F2, K2, M(28) );
    	R( b, c, d, e, a, F2, K2, M(29) );
    	R( a, b, c, d, e, F2, K2, M(30) );
    	R( e, a, b, c, d, F2, K2, M(31) );
    	R( d, e, a, b, c, F2, K2, M(32) );
    	R( c, d, e, a, b, F2, K2, M(33) );
    	R( b, c, d, e, a, F2, K2, M(34) );
    	R( a, b, c, d, e, F2, K2, M(35) );
    	R( e, a, b, c, d, F2, K2, M(36) );
    	R( d, e, a, b, c, F2, K2, M(37) );
    	R( c, d, e, a, b, F2, K2, M(38) );
    	R( b, c, d, e, a, F2, K2, M(39) );
    	R( a, b, c, d, e, F3, K3, M(40) );
    	R( e, a, b, c, d, F3, K3, M(41) );
    	R( d, e, a, b, c, F3, K3, M(42) );
    	R( c, d, e, a, b, F3, K3, M(43) );
    	R( b, c, d, e, a, F3, K3, M(44) );
    	R( a, b, c, d, e, F3, K3, M(45) );
    	R( e, a, b, c, d, F3, K3, M(46) );
    	R( d, e, a, b, c, F3, K3, M(47) );
    	R( c, d, e, a, b, F3, K3, M(48) );
    	R( b, c, d, e, a, F3, K3, M(49) );
    	R( a, b, c, d, e, F3, K3, M(50) );
    	R( e, a, b, c, d, F3, K3, M(51) );
    	R( d, e, a, b, c, F3, K3, M(52) );
    	R( c, d, e, a, b, F3, K3, M(53) );
    	R( b, c, d, e, a, F3, K3, M(54) );
    	R( a, b, c, d, e, F3, K3, M(55) );
    	R( e, a, b, c, d, F3, K3, M(56) );
    	R( d, e, a, b, c, F3, K3, M(57) );
    	R( c, d, e, a, b, F3, K3, M(58) );
    	R( b, c, d, e, a, F3, K3, M(59) );
    	R( a, b, c, d, e, F4, K4, M(60) );
    	R( e, a, b, c, d, F4, K4, M(61) );
    	R( d, e, a, b, c, F4, K4, M(62) );
    	R( c, d, e, a, b, F4, K4, M(63) );
    	R( b, c, d, e, a, F4, K4, M(64) );
    	R( a, b, c, d, e, F4, K4, M(65) );
    	R( e, a, b, c, d, F4, K4, M(66) );
    	R( d, e, a, b, c, F4, K4, M(67) );
    	R( c, d, e, a, b, F4, K4, M(68) );
    	R( b, c, d, e, a, F4, K4, M(69) );
    	R( a, b, c, d, e, F4, K4, M(70) );
    	R( e, a, b, c, d, F4, K4, M(71) );
    	R( d, e, a, b, c, F4, K4, M(72) );
    	R( c, d, e, a, b, F4, K4, M(73) );
    	R( b, c, d, e, a, F4, K4, M(74) );
    	R( a, b, c, d, e, F4, K4, M(75) );
    	R( e, a, b, c, d, F4, K4, M(76) );
    	R( d, e, a, b, c, F4, K4, M(77) );
    	R( c, d, e, a, b, F4, K4, M(78) );
    	R( b, c, d, e, a, F4, K4, M(79) );
    
    	/* Update chaining vars */
    	hd->h0 += a;
    	hd->h1 += b;
    	hd->h2 += c;
    	hd->h3 += d;
    	hd->h4 += e;
    }
    
    
    /* Update the message digest with the contents
    * of INBUF with length INLEN.
    */
    static void
    	sha1_write( SHA1_CONTEXT *hd, unsigned char *inbuf, size_t inlen)
    {
    	if( hd->count == 64 ) { /* flush the buffer */
    		transform( hd, hd->buf );
    		hd->count = 0;
    		hd->nblocks++;
    	}
    	if( !inbuf )
    		return;
    	if( hd->count ) {
    		for( ; inlen && hd->count < 64; inlen-- )
    			hd->buf[hd->count++] = *inbuf++;
    		sha1_write( hd, NULL, 0 );
    		if( !inlen )
    			return;
    	}
    
    	while( inlen >= 64 ) {
    		transform( hd, inbuf );
    		hd->count = 0;
    		hd->nblocks++;
    		inlen -= 64;
    		inbuf += 64;
    	}
    	for( ; inlen && hd->count < 64; inlen-- )
    		hd->buf[hd->count++] = *inbuf++;
    }
    
    
    /* The routine final terminates the computation and
    * returns the digest.
    * The handle is prepared for a new cycle, but adding bytes to the
    * handle will the destroy the returned buffer.
    * Returns: 20 bytes representing the digest.
    */
    
    static void
    	sha1_final(SHA1_CONTEXT *hd)
    {
    	u32 t, msb, lsb;
    	unsigned char *p;
    
    	sha1_write(hd, NULL, 0); /* flush */;
    
    	t = hd->nblocks;
    	/* multiply by 64 to make a byte count */
    	lsb = t << 6;
    	msb = t >> 26;
    	/* add the count */
    	t = lsb;
    	if( (lsb += hd->count) < t )
    		msb++;
    	/* multiply by 8 to make a bit count */
    	t = lsb;
    	lsb <<= 3;
    	msb <<= 3;
    	msb |= t >> 29;
    
    	if( hd->count < 56 ) { /* enough room */
    		hd->buf[hd->count++] = 0x80; /* pad */
    		while( hd->count < 56 )
    			hd->buf[hd->count++] = 0;  /* pad */
    	}
    	else { /* need one extra block */
    		hd->buf[hd->count++] = 0x80; /* pad character */
    		while( hd->count < 64 )
    			hd->buf[hd->count++] = 0;
    		sha1_write(hd, NULL, 0);  /* flush */;
    		memset(hd->buf, 0, 56 ); /* fill next block with zeroes */
    	}
    	/* append the 64 bit count */
    	hd->buf[56] = msb >> 24;
    	hd->buf[57] = msb >> 16;
    	hd->buf[58] = msb >>  8;
    	hd->buf[59] = msb	   ;
    	hd->buf[60] = lsb >> 24;
    	hd->buf[61] = lsb >> 16;
    	hd->buf[62] = lsb >>  8;
    	hd->buf[63] = lsb	   ;
    	transform( hd, hd->buf );
    
    	p = hd->buf;
    #ifdef BIG_ENDIAN_HOST
    #define X(a) do { *(u32*)p = hd->h##a ; p += 4; } while(0)
    #else /* little endian */
    #define X(a) do { *p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16;	 
    	*p++ = hd->h##a >> 8; *p++ = hd->h##a; } while(0)
    #endif
    	X(0);
    	X(1);
    	X(2);
    	X(3);
    	X(4);
    #undef X
    }

    控制台调用函数:

    /*输出文件的SHA1值
    * FileNameInPut:文件路径
    */
    void GetFileSHA1(char *FileNameInPut)
    {
    	if(FileNameInPut==NULL) 
    	{
    		printf("
    Usage:
         <EXEFILE> <FILENAME>
     ");
    		return;
    	}
    	FILE *fp;
    	char buffer[4096];
    	size_t n;
    	SHA1_CONTEXT ctx;
    	int i;
    
    	fopen_s (&fp, FileNameInPut, "rb");
    	if (!fp)			
    	{
    		printf("打开文件“%s”失败
    ", FileNameInPut);
    		return;
    	}
    	sha1_init (&ctx);
    	while ( (n = fread (buffer, 1, sizeof buffer, fp)))		sha1_write (&ctx, (unsigned char *)buffer, n);
    	if (ferror (fp))
    	{
    		printf("读取文件“%s”失败
    ", FileNameInPut);
    		return;
    	}
    	sha1_final (&ctx);
    	fclose (fp);
    
    	for ( i=0; i < 20; i++)
    	{
    		printf("%02x",ctx.buf[i]);
    	}
    }

    适合程序中调用的返回值方式:

    /*获取文件的SHA1值,假设错误发生则将错误信息写入outError
    * FileNameInPut:文件路径
    * outSHA1:SHA1输出变量
    * outError:错误信息输出变量
    * returns:outSHA1
    */
    char *GetFileSHA1(char *FileNameInPut, char *outSHA1, char *outError)
    {
    	if(FileNameInPut==NULL) 
    	{
    		if (outError != NULL)
    		{
    			sprintf(outError, "%s", "FileNameInPut Is NULL");
    		}
    		return outSHA1;
    	}
    	FILE *fp;
    	char buffer[4096];
    	size_t n;
    	SHA1_CONTEXT ctx;
    	int i;
    
    	fopen_s (&fp, FileNameInPut, "rb");
    	if (!fp)			
    	{
    		if (outError != NULL)
    		{
    			sprintf(outError, "打开文件“%s”失败
    ", FileNameInPut);
    		}
    		return outSHA1;
    	}
    	sha1_init (&ctx);
    	while ( (n = fread (buffer, 1, sizeof buffer, fp)))		sha1_write (&ctx, (unsigned char *)buffer, n);
    	if (ferror (fp))
    	{
    		if (outError != NULL)
    		{
    			sprintf(outError, "读取文件“%s”失败
    ", FileNameInPut);
    		}
    		return outSHA1;
    	}
    	sha1_final (&ctx);
    	fclose (fp);
    
    	for ( i=0; i < 20; i++)
    	{
    		sprintf(outSHA1 + 2*i, "%02x", (unsigned char)ctx.buf[i]);
    	}
    	outSHA1[2*i] = '';
    	return outSHA1;
    }
    水平有限,此方法仅仅是简单的实现,还有些问题没有解决,希望高手指点一二。小弟不胜感激!

    使用方法演示样例:

    //使用方法实例:
    int main (int argc, char **argv)
    {
    	GetFileSHA1(*(argv+1));
    
    	printf("
    ");
    	char sha1[41] = { 0 };
    	char eror[256] = { 0 };
    	printf("%s
    ", GetFileSHA1(*(argv+1), sha1, NULL));
    	if (strlen(eror) != 0)
    	{
    		printf("获取SHA1错误发生:%s
    ", eror);
    	}
    
    	printf("%s
    ", GetFileSHA1(*(argv+1), sha1, eror));
    	if (strlen(eror) != 0)
    	{
    		printf("获取SHA1错误发生:%s
    ", eror);
    	}
    	getchar();
    	return 0;
    }

    命令提示符下使用方法:


    源代码下载:http://download.csdn.net/detail/testcs_dn/7332933

    版权声明:本文博主原创文章。博客,未经同意不得转载。

  • 相关阅读:
    如何在js中使用递归
    基于angular写的一个todolist
    使用github参与开源项目
    用sass写栅格系统
    Activity返回按钮
    Listview优化MovieListAdapter的使用
    [强悍]listview下拉刷新,上拉加载更多组件版
    Google自己的下拉刷新组件SwipeRefreshLayout
    当ListView有Header时,onItemClick里的position不正确
    tabhost练习,剥离自“去哪儿”
  • 原文地址:https://www.cnblogs.com/blfshiye/p/4877739.html
Copyright © 2011-2022 走看看