zoukankan      html  css  js  c++  java
  • HDU 3001 Travelling

    Description

    After coding so many days,Mr Acmer wants to have a good rest.So travelling is the best choice!He has decided to visit n cities(he insists on seeing all the cities!And he does not mind which city being his start station because superman can bring him to any city at first but only once.), and of course there are m roads here,following a fee as usual.But Mr Acmer gets bored so easily that he doesn't want to visit a city more than twice!And he is so mean that he wants to minimize the total fee!He is lazy you see.So he turns to you for help.
     

    Input

    There are several test cases,the first line is two intergers n(1<=n<=10) and m,which means he needs to visit n cities and there are m roads he can choose,then m lines follow,each line will include three intergers a,b and c(1<=a,b<=n),means there is a road between a and b and the cost is of course c.Input to the End Of File.
     

    Output

    Output the minimum fee that he should pay,or -1 if he can't find such a route.
     

    Sample Input

    2 1 1 2 100 3 2 1 2 40 2 3 50 3 3 1 2 3 1 3 4 2 3 10
     

    Sample Output

    100 90 7


    题意:一个Acmer要出去旅行。有n个城市m条路,一个城市不能去2次以上,求经过全部城市一次的最短路。

    思路:3进制计算,就是要开一个数组存3进制数了。

    AC代码:

    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <cstring>
    #include <stdlib.h>
    
    using namespace std;
    const int INF=0x1f1f1f1f;
    int mp[15][15];
    int dp[59050][15];
    int pow3[12]={0,1,3,9,27,81,243,729,2187,6561,19683,59049};
    int n,m;
    int p[59050][15];
    
    
    int main(){
        for(int i=0;i<59050;i++){
            int temp=i;
            for(int j=1;j<=10;j++){
                p[i][j]=temp%3;
                temp/=3;
                if(temp==0) break;
            }
        }
        while(~scanf("%d%d",&n,&m)){
            memset(mp,INF,sizeof(mp));
            for(int i=0;i<m;i++){
                int a,b,c;
                scanf("%d%d%d",&a,&b,&c);
                if(c<mp[a][b])//居然有多重边T_T,坑死我啦;
                    mp[a][b]=mp[b][a]=c;
            }
            memset(dp,INF,sizeof(dp));
            for(int i=1;i<=n;i++) dp[pow3[i]][i]=0;
            bool flag;
            int ans=INF;
            for(int s=0;s<pow3[n+1];s++){
                flag=true;
                for(int i=1;i<=n;i++){
                    if(p[s][i]==0) flag=false;
                    if(dp[s][i]==INF) continue;
                    for(int j=1;j<=n;j++){
                        if(i==j) continue;
                        if(p[s][j]>=2) continue;
                        if(mp[i][j]==INF) continue;
                        int ts=s+pow3[j];
                        dp[ts][j]=min(dp[ts][j],dp[s][i]+mp[i][j]);
                    }
                }
                if(flag){
                    for(int k=1;k<=n;k++){
                        ans=min(ans,dp[s][k]);
                    }
                }
            }
            if(ans==INF) printf("-1
    ");
            else printf("%d
    ",ans);
        }
        return 0;
    }
    



    
  • 相关阅读:
    函数声明、引用
    事件绑定的快捷方式 利on进行事件绑定的几种情况
    BOM的节点方法和属性
    JQuery语法 JQuery对象与原生对象互转 文档就绪函数与window.onload的区别
    JPEG解码:huffman解码
    Quartus 中快速分配器件管脚
    PLL的modelsim仿真
    JPEG解码:桶型寄存器
    JPEG解码:反DCT变换(二)
    JPEG解码:反DCT变换(一)
  • 原文地址:https://www.cnblogs.com/blfshiye/p/5053754.html
Copyright © 2011-2022 走看看