题目链接:Climbing Stairs
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
这道题的要求是爬n阶楼梯。每次仅仅能够爬1步或2步,总共同拥有多少种不同方法能爬到顶?
动态规划。如果要爬到第i阶,能够由i-1和i-2阶1次过去。因此dp[i] = dp[i-1] + dp[i-2]。
能够注意到,爬到n阶台阶的方案数目事实上就是求斐波那契数列的第n+1位。
时间复杂度:O(n)
空间复杂度:O(n)
1 class Solution
2 {
3 public:
4 int climbStairs(int n)
5 {
6 vector<int> v(n + 1);
7 v[0] = v[1] = 1;
8 for(int i = 2; i <= n; ++ i)
9 v[i] = v[i - 1] + v[i - 2];
10 return v[n];
11 }
12 };
因为动态规划的时候仅仅用到了前面2步,因此能够用两个变量记录一下。这样就将空间复杂度降到O(1)了。
时间复杂度:O(n)
空间复杂度:O(1)
1 class Solution
2 {
3 public:
4 int climbStairs(int n)
5 {
6 int n2 = 0, n1 = 1, res = 0;
7 for(int i = 0; i < n; ++ i)
8 {
9 res = n2 + n1;
10 n2 = n1;
11 n1 = res;
12 }
13 return res;
14 }
15 };
转载请说明出处:LeetCode --- 70. Climbing Stairs