zoukankan      html  css  js  c++  java
  • Codeforces Round #112 (Div. 2)---A. Supercentral Point

    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of points (x1, y1), (x2, y2), ..., (xn, yn). Let's define neighbors for some fixed point from the given set (x, y):

    • point (x', y') is (x, y)'s right neighbor, if x' > x and y' = y
    • point (x', y') is (x, y)'s left neighbor, if x' < x and y' = y
    • point (x', y') is (x, y)'s lower neighbor, if x' = x and y' < y
    • point (x', y') is (x, y)'s upper neighbor, if x' = x and y' > y

    We'll consider point (x, y) from the given set supercentral, if it has at least one upper, at least one lower, at least one left and at least one right neighbor among this set's points.

    Vasya marked quite many points on the paper. Analyzing the picture manually is rather a challenge, so Vasya asked you to help him. Your task is to find the number of supercentral points in the given set.

    Input

    The first input line contains the only integer n (1 ≤ n ≤ 200) — the number of points in the given set. Next n lines contain the coordinates of the points written as "x y" (without the quotes) (|x|, |y| ≤ 1000), all coordinates are integers. The numbers in the line are separated by exactly one space. It is guaranteed that all points are different.

    Output

    Print the only number — the number of supercentral points of the given set.

    Sample test(s)
    input
    8
    1 1
    4 2
    3 1
    1 2
    0 2
    0 1
    1 0
    1 3
    
    output
    2
    
    input
    5
    0 0
    0 1
    1 0
    0 -1
    -1 0
    
    output
    1
    
    Note

    In the first sample the supercentral points are only points (1, 1) and (1, 2).

    In the second sample there is one supercental point — point (0, 0).






    解题思路:没什么说的。直接暴力搞了。

    遍历每一个点,看是否符合要求。为了省时间,我们能够在输入的时候把x的上限,下限,和y的上限和下限先记录一下,在推断每一个点的时候会用到。





    AC代码:

    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <string>
    #include <math.h>
    #include <stdlib.h>
    #include <time.h>
    using namespace std;
    #define INF 0x7fffffff
    
    int x[205], y[205], a[2005][2005];
    
    int main()
    {
        #ifdef sxk
            freopen("in.txt","r",stdin);
        #endif
        int n, xx, yy, xxx, yyy, flag0, flag1, flag2, flag3;
        while(scanf("%d",&n)!=EOF)
        {
            memset(a, 0, sizeof(a));
            xx = yy = -12345;
            xxx= yyy = 12345;
            for(int i=0; i<n; i++){
                scanf("%d%d", &x[i], &y[i]);
                x[i] += 1000;  y[i] += 1000;
                a[x[i]][y[i]] = 1;
                if(xx < x[i]) xx = x[i];       //纪录x。y范围
                if(xxx > x[i]) xxx = x[i];
                if(yy < y[i])  yy = y[i];
                if(yyy > y[i]) yyy = y[i];
            }
            int ans = 0;
            for(int i=0; i<n; i++){
                flag0 = flag1 = flag2 = flag3 = 0;
                for(int j=x[i]+1; j<=xx; j++){        //推断
                    if( a[j][ y[i] ] ){
                        flag0 = 1;
                        break;
                    }
                }  
                if(flag0){                        
                    for(int j=xxx; j<x[i]; j++){
                        if( a[j][ y[i] ] ){
                            flag1 = 1;
                            break;
                        }
                    }
                    if(flag1){
                        for(int j=y[i]+1; j<=yy; j++){
                            if( a[x[i]][j] ){
                                flag2 = 1;
                                break;
                            }
                        }
                        if(flag2){
                            for(int j=yyy; j<y[i]; j++){
                                if( a[x[i]][j] ){
                                    flag3 = 1;
                                    break;
                                }
                            }
                        }
                    }
                }
                if(flag3) ans ++;
            }
            printf("%d
    ", ans);
        }
        return 0;
    }



  • 相关阅读:
    g++ 链接静态库命令应该放在最后
    Yahoo 股票数据抓取
    Android使用tcpdump抓包
    警惕rapidxml的陷阱(二):在Android上默认内存池分配数组过大,容易导致栈溢出
    警惕rapidxml的陷阱:添加节点时,请保证变量的生命周期
    union中的成员不能有构造函数
    嵌入式设备上运行AllJoyn注意事项
    alljoyn连接时-fno-rtti选项测试结果
    AllJoyn Bundled Daemon 使用方式研究
    linux连接静态库
  • 原文地址:https://www.cnblogs.com/blfshiye/p/5094949.html
Copyright © 2011-2022 走看看