OO’s Sequence
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 955 Accepted Submission(s): 358
Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy ai mod aj=0,now OO want to know
()
Input
There are multiple test cases. Please process till EOF.
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
Output
For each tests: ouput a line contain a number ans.
Sample Input
5 1 2 3 4 5
Sample Output
23
Author
FZUACM
Source
解题思路:
预处理出全部数的因数而且保存每一个数出现的位置,对于每一个A[i], 找最小的区间使得该区间内不包括A[i]的因数,通过向左向右进行两次二分查找来实现。
#include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <cmath> #include <queue> #include <stack> #include <algorithm> using namespace std; const int MAXN = 100000 + 10; const int MOD = 1e9 + 7; vector<int>G[MAXN]; vector<int>p[MAXN]; vector<int>rp[MAXN]; vector<int>M[MAXN]; int N; int A[MAXN]; int main() { for(int i=1; i<=10000; i++) { for(int j=i; j<=10000; j+=i) G[j].push_back(i); } while(scanf("%d", &N)!=EOF) { for(int i=1;i<=N;i++) p[i].clear(); for(int i=1;i<=N;i++) rp[i].clear(); for(int i=1; i<=N; i++) scanf("%d", &A[i]); for(int i=1; i<=N; i++) { p[A[i]].push_back(i); } for(int i=N;i>=1;i--) { rp[A[i]].push_back(-i); } long long ans = 0; for(int i=1; i<=N; i++) { int L = -1, R = N + 1; for(int j=0; j<G[A[i]].size(); j++) { int x = G[A[i]][j]; int r = upper_bound(p[x].begin(), p[x].end(), i) - p[x].begin(); int l = upper_bound(rp[x].begin(), rp[x].end(), -i) - rp[x].begin(); if(r >= p[x].size()) r = N + 1; else r = p[x][r]; //cout << x << ": " << l << ' '<< r << endl; if(l >= rp[x].size()) l = 0; else l = -(rp[x][l]); //cout << x << ": " << l << ' '<< r << endl; L = max(l, L); R = min(R, r); } if(R == 0) R = N + 1; if(L < 0) L = 0; //cout << L << ' ' << R << endl; ans = (ans + (long long)(i - L) * (long long)(R - i)) % MOD; } printf("%I64d ", ans ); } return 0; }