documentclass[UTF8,a1paper,landscape]{ctexart} usepackage{tikz} usepackage{amsmath} usepackage{amssymb} usepackage{geometry} geometry{top=5cm,bottom=5cm,left=5cm,right=5cm} usepackage{fancyhdr} pagestyle{fancy} egin{document} itle{Huge 概率论与数理统计图解} author{dengchaohai} maketitle ewpage egin{center} egin{tikzpicture} [r/.style={rectangle,draw,align=left,rounded corners=.8ex}] ode(0)at(0,0)[r]{ extbf{0现象}}; ode(1)at(5,0)[r]{ extbf{1确定性现象}}; ode(2)at(5,-5)[r]{ extbf{2随机性现象}}; ode(3)at(10,-5)[r]{ extbf{3随机试验} \.可重复 \.可观察 \.随机性}; ode(4)at(25,-5)[r]{ extbf{4样本点$omega$}}; ode(5)at(40,-5)[r]{ extbf{5样本空间$Omega={omega|cdots}$} \.离散$Omega={{omega_1,omega_2,cdots}}$ \.连续$Omega=(a,b)$}; ode(6)at(25,-10)[r]{ extbf{6基本事件$omega$}}; ode(7)at(40,-10)[r]{ extbf{7事件$A,B,cdots$} \$emptysetleq Aleq Omega$}; ode(8)at(55,-10)[r]{ extbf{8集合$A,B,cdots$} \.互不相容$AB=emptysetRightarrow$对立$overline{A}=Omega-A$ \.加(交集$Acap B$)减(差集$A-B$)乘(并集$Acup B$)除(包含$Asubseteq B$) \.{[(交换律+结合律)=分配律]+自反律}=对偶律}; ode(9)at(25,-25)[r]{ extbf{9随机变量$X$}}; ode(10)at(40,-25)[r]{ extbf{10概率函数$P(A)$} \.$0=emptysetleq P(A)leq Omegaleq 1$ \.否$P(overline{A})=1-P(A)$ \.加$P(A+B)=P(A)+P(B)-P(AB)$ \.减$P(A-B)=P(A)-P(AB)$ \.乘$P(AB)=P(A)P(B|A)$ \.除$P(B|A)=frac{P(AB)}{P(A)}$}; ode(11)at(55,-25)[r]{ extbf{11分布函数$F(x)$} \.单调性$x_1leq x_2Rightarrow F(x_1)leq F(x_2)$ \.端点极限性$F(-infty)=0,F(+infty)=1$ \.右连续性$F(x+0)=F(x)$}; ode(12)at(15,-25)[r]{ extbf{12随机向量$(X,Y,cdots)$}}; ode(13)at(25,-30)[r]{ extbf{13变量函数$Y=g(X)$}}; ode(15)at(30,-32.5)[r]{ extbf{15一阶原点矩|期望} \.离散$EY=Eg(X)=sum_i^infty g(x_i)p_i$ \.连续$EY=Eg(X)=int_{-infty}^{+infty} g(x)f(x)dx$ \.$E(ag(X)+b)=aEg(X)+b$}; ode(16)at(30,-35)[r]{ extbf{16二阶中心矩|方差$DY=E(Y-EY)^2=EY^2-(EY)^2$} \.$D(aX+b)=a^2DX$}; ode(17)at(55,-45)[r]{ extbf{17边缘分布函数$F_X(x)=F(x,+infty),F_Y(y)=F(+infty,y)$}}; ode(18)at(55,-35)[r]{ extbf{18联合分布函数$F(x,y)=P{Xleq x,Yleq y}$}}; ode(19)at(40,-40)[r]{ extbf{19边缘概率函数} \.离散$p_i^X,p_j^Y$ \.连续$f_X(x),f_Y(y)$}; ode(20)at(40,-35)[r]{ extbf{20联合概率函数} \.离散$p_{ij}=P{X=x_i,Y=y_i}$ \.连续$f(x,y)$}; ode(22)at(32.5,-17.5)[r]{ extbf{22基本概型$P(A)=frac{{omega|omegain A}}{{omega|omegainOmega}}$} \.古典概型(有限等可能) \.几何概型(无限等可能)}; ode(23)at(25,-32.5)[r]{ extbf{23总体$X$}}; ode(24)at(18,-32.5)[r]{ extbf{24样本$(X_1,X_2,cdots)$}}; ode(25)at(30,-37.5)[r]{ extbf{25切比雪夫不等式$P{|X-EX|geq epsilon}leq frac{DX}{epsilon^2}$}}; ode(26)at(47.5,-37.5)[r]{ extbf{26条件概率函数} \.离散$P_{i|j}=P{X=x_i|Y=y_j}=frac{P{X=x_i,Y=y_j}}{P{Y=y_j}}=frac{p_{ij}}{P_j^Y}$ \.连续$f_{X|Y}(x|y)=frac{f(x,y)}{f_Y(y)}$}; ode(27)at(60,-37.5)[r]{ extbf{27条件分布函数$F(x|y)=frac{F(x,y)}{F_Y(y)}$}}; ode(28)at(40,-32.5)[r]{ extbf{28随机向量的期望,协方差} \.离散$EZ=Eg(X,Y)=sum_{i,j}^{infty}g(x_i,y_i)p_{ij}$ \.连续$EZ=Eg(X,Y)=int_{-infty}^{+infty}int_{-infty}^{+infty}g(x,y)f(x,y)dxdy$ \.$cov(X,Y)=E[(X-EX)(Y-EY)]$ \.$E(X+Y)=EX+EY,D(X+Y)=DX+DY+2cov(X,Y)$}; ode(29)at(50,-32.5)[r]{ extbf{29条件数学期望} \.离散$E[X|Y=y_j]=sum_ix_ip_{i|j}$ \.连续$E[X|Y=y]=int_{-infty}^{+infty}xf_{X|Y}(x|y)dx$}; draw[->](0)--(1); draw[->](0)--(2.5,0)--(2.5,-5)--(2); draw[->](2)to node[above]{观察}(3); draw[->](3)to node[above]{结果}(4); draw[->](4)to node[above]{全体}(5); draw[->](4)to node[right]{单个}(6); draw[->](5)to node[right]{子集}(7); draw[->](6)to node[above]{复合$A={omega|cdots}$}(7); draw[->](7)to node[above]{等价}(8); draw[->](6)to node[right]{函数$X=X(omega)$}(9); draw[->](7)to node[r,right]{测度 \.$P(Omega)=1$ \.$P(A)geq0$ \.可列可加}(10); draw[->](9)to node(21)[r,above]{频率$x=X(omega)Rightarrow P(A)=frac{{omega|omegain A}}{{omega|omegainOmega}}$ \.离散$p_i=p(x_i)=P{X=x_i}$ \.连续$f(x)$}(10); draw[->](10)to node[r,above]{累和$F(x)=P{Xleq x}$ \.离散|分段阶梯$sum_i^x p_i$ \.连续|积分面积$int_{-infty}^x f(x)dx$}(11); draw[->](9)to node[right]{复合}(13); draw(10)--(40,-30)to node(14)[below]{相乘}(13); draw[->](14)to node[right]{累和}(15); draw[->](15)--(16); draw[->](9)--(12); draw[->](12)--(15,-45)--(17); draw[->](17)--(18); draw[->](16,-25.3)--(16,-40)to node[above]{条件概率$P(B|A)=frac{P(AB)}{P(A)}$|乘法公式$P(AB)=P(A)P(A|B)$|独立性$P(AB)=P(A)P(B)$}(19); draw[->](19)to node[right]{全概率|贝叶斯}(20); draw[->](22)--(21); draw[->](24.north)to node[above]{假设估计类型,假设估计参数[点估计(最大似然,矩估计),区间估计]}(23.north); draw[->](24.south)to node[below,align=left]{无偏(期望)\有效(方差)\相合(依概率收敛$lim_{nlongrightarrowinfty}P{|X_n-X|>epsilon}=0$}(23.south); draw[->](23)--(15); draw[->](16)--(25); draw[->](19)--(26); draw[->](26)--(20); draw[->](17)--(27) (27)--(18) (20)--(28) (26)--(29); end{tikzpicture} end{center} end{document}