我有两个目录,我想从中读取它们的文本文件并给它们贴上标签,但我不知道如何通过taggedDocument来实现这一点。我以为它可以作为标记文档([strings],[labels])工作,但这显然不起作用。
from gensim import models from gensim.models.doc2vec import TaggedDocument import utilities as util import os from sklearn import svm from nltk.tokenize import sent_tokenize CogPath = "./FixedCog/" NotCogPath = "./FixedNotCog/" SamplePath ="./Sample/" docs = [] tags = [] CogList = [p for p in os.listdir(CogPath) if p.endswith('.txt')] NotCogList = [p for p in os.listdir(NotCogPath) if p.endswith('.txt')] SampleList = [p for p in os.listdir(SamplePath) if p.endswith('.txt')] for doc in CogList: str = open(CogPath+doc,'r').read().decode("utf-8") docs.append(str) print docs tags.append(doc) print "###########" print tags print "!!!!!!!!!!!" for doc in NotCogList: str = open(NotCogPath+doc,'r').read().decode("utf-8") docs.append(str) tags.append(doc) for doc in SampleList: str = open(SamplePath + doc, 'r').read().decode("utf-8") docs.append(str) tags.append(doc) T = TaggedDocument(docs,tags) model = models.Doc2Vec(T,alpha=.025, min_alpha=.025, min_count=1,size=50)
错误
Traceback (most recent call last): File "/home/farhood/PycharmProjects/word2vec_prj/doc2vec.py", line 34, in <module> model = models.Doc2Vec(T,alpha=.025, min_alpha=.025, min_count=1,size=50) File "/home/farhood/anaconda2/lib/python2.7/site-packages/gensim/models/doc2vec.py", line 635, in __init__ self.build_vocab(documents, trim_rule=trim_rule) File "/home/farhood/anaconda2/lib/python2.7/site-packages/gensim/models/word2vec.py", line 544, in build_vocab self.scan_vocab(sentences, progress_per=progress_per, trim_rule=trim_rule) # initial survey File "/home/farhood/anaconda2/lib/python2.7/site-packages/gensim/models/doc2vec.py", line 674, in scan_vocab if isinstance(document.words, string_types): AttributeError: 'list' object has no attribute 'words'
所以我只是做了一些测试,在Github上发现了这一点:
class TaggedDocument(namedtuple('TaggedDocument', 'words tags')): """ A single document, made up of `words` (a list of unicode string tokens) and `tags` (a list of tokens). Tags may be one or more unicode string tokens, but typical practice (which will also be most memory-efficient) is for the tags list to include a unique integer id as the only tag. Replaces "sentence as a list of words" from Word2Vec.
因此,我决定通过为每个文档生成一个taggedDocument类来更改使用taggedDocument函数的方式,重要的是必须将标记作为列表传递。
for doc in CogList: str = open(CogPath+doc,'r').read().decode("utf-8") str_list = str.split() T = TaggedDocument(str_list,[doc]) docs.append(T)
doc2vec模型的输入应该是taggeddocument的列表(['list'、'of'、'word']、[tag_])。一个好的实践是使用句子的索引作为标记。例如,用两个句子(即文档、段落)训练doc2vec模型:
s1 = 'the quick fox brown fox jumps over the lazy dog' s1_tag = '001' s2 = 'i want to burn a zero-day' s2_tag = '002' docs = [] docs.append(TaggedDocument(words=s1.split(), tags=[s1_tag]) docs.append(TaggedDocument(words=s2.split(), tags=[s2_tag]) model = gensim.models.Doc2Vec(vector_size=300, window=5, min_count=5, workers=4, epochs=20) model.build_vocab(docs) print 'Start training process...' model.train(docs, total_examples=model.corpus_count, epochs=model.iter) #save model model.save(model_path)
您可以使用Gensim的常用文本作为示例:
from gensim.test.utils import common_texts from gensim.models.doc2vec import Doc2Vec, TaggedDocument documents = [TaggedDocument(doc, [i]) for i, doc in enumerate(common_texts)] model = Doc2Vec(documents, vector_size=5, window=2, min_count=1, workers=4)