zoukankan      html  css  js  c++  java
  • Android : Camera HAL3的参数传递(CameraMetadata)

    一、camera_metadata简介

      Camera API2/HAL3架构下使用了全新的CameraMetadata结构取代了之前的SetParameter/Paramters等操作,实现了Java到native到HAL3的参数传递。引入了管道的概念将安卓设备和摄像头之间联系起来,系统向摄像头发送 Capture 请求,而摄像头会返回 CameraMetadata,这一切建立在一个叫作 CameraCaptureSession 的会话中。

    二、Framework到HAL层的转换

      Camera2Client 使用 API1 传递参数采用的逻辑是还是在Java层预留了setParameters接口,只是当Parameter在设置时比起CameraClient而言,是将这个Parameter根据不同的TAG形式直接绑定到CameraMetadata mPreviewRequest/mRecordRequest/mCaptureRequest中,这些数据会由Capture_Request转为camera3_capture_request中的camera_metadata_t settings完成参数从Java到native到HAL3的传递。

      但是在Camera API2下,不再需要那么复杂的转换过程,在Java层中直接对参数进行设置并将其封装到Capture_Request即可,即参数控制由Java层来完成。这也体现了API2中Request和Result在APP中就大量存在的原因。对此为了和Framework Native层相关TAG数据的统一,在Java层中大量出现的参数设置是通过Section Tag的name来交由Native完成转换生成在Java层的TAG。

    (1)Java层对应代码位置:frameworksasecorejavaandroidhardwarecamera2implCameraMetadataNative.java

        private <T> T getBase(Key<T> key) {
            int tag = nativeGetTagFromKeyLocal(key.getName());
            byte[] values = readValues(tag);
            if (values == null) {
                // If the key returns null, use the fallback key if exists.
                // This is to support old key names for the newly published keys.
                if (key.mFallbackName == null) {
                    return null;
                }
                tag = nativeGetTagFromKeyLocal(key.mFallbackName);
                values = readValues(tag);
                if (values == null) {
                    return null;
                }
            }
    
            int nativeType = nativeGetTypeFromTagLocal(tag);
            Marshaler<T> marshaler = getMarshalerForKey(key, nativeType);
            ByteBuffer buffer = ByteBuffer.wrap(values).order(ByteOrder.nativeOrder());
            return marshaler.unmarshal(buffer);
        }

    (2)Native层对应代码位置:frameworks/base/core/jni/android_hardware_camera2_CameraMetadata.cpp

    static const JNINativeMethod gCameraMetadataMethods[] = {
    // static methods
      { "nativeGetTagFromKey",
        "(Ljava/lang/String;J)I",
        (void *)CameraMetadata_getTagFromKey },
      { "nativeGetTypeFromTag",
        "(IJ)I",
        (void *)CameraMetadata_getTypeFromTag },
      { "nativeSetupGlobalVendorTagDescriptor",
        "()I",
        (void*)CameraMetadata_setupGlobalVendorTagDescriptor },
    // instance methods
    ......

      其中CameraMetadata_getTagFromKey是实现将一个Java层的string转为一个tag的值,如:android.control.mode。对比最初不同的Section name就可以发现前面两个x.y的字符串就是代表是Section name.而后面mode即是在该section下的tag数值,所以通过对这个string的分析可知,就可以定位对应的section以及tag值,这样返回到Java层的就是key相应的tag值了。继续追踪到 systemmediacamerasrccamera_metadata.c:

    // Declared in system/media/private/camera/include/camera_metadata_hidden.h
    const char *get_local_camera_metadata_tag_name_vendor_id(uint32_t tag,
            metadata_vendor_id_t id) {
        uint32_t tag_section = tag >> 16;
        if (tag_section >= VENDOR_SECTION && vendor_cache_ops != NULL &&
                    id != CAMERA_METADATA_INVALID_VENDOR_ID) {
                return vendor_cache_ops->get_tag_name(tag, id);
        } else  if (tag_section >= VENDOR_SECTION && vendor_tag_ops != NULL) {
            return vendor_tag_ops->get_tag_name(
                vendor_tag_ops,
                tag);
        }
        if (tag_section >= ANDROID_SECTION_COUNT ||
            tag >= camera_metadata_section_bounds[tag_section][1] ) {  // 关键是camera_metadata_section_bounds这个数组,保存了各个tag的绑定信息
            return NULL;
        }
        uint32_t tag_index = tag & 0xFFFF;
        return tag_info[tag_section][tag_index].tag_name;
    }

      其他相关文件的调用关系如下图:

       其中 camera_metadata_tags.h 包含了所有的基本宏,每一个section的大小是64K(每个枚举值左移16位):

    /**
     * !! Do not include this file directly !!
     *
     * Include camera_metadata.h instead.
     */
    
    /**
     * ! Do not edit this file directly !
     *
     * Generated automatically from camera_metadata_tags.mako
     */
    
    /** TODO: Nearly every enum in this file needs a description */
    
    /**
     * Top level hierarchy definitions for camera metadata. *_INFO sections are for
     * the static metadata that can be retrived without opening the camera device.
     * New sections must be added right before ANDROID_SECTION_COUNT to maintain
     * existing enumerations.
     */
    typedef enum camera_metadata_section {
        ANDROID_COLOR_CORRECTION,
        ANDROID_CONTROL,
        ANDROID_DEMOSAIC,
        ANDROID_EDGE,
        ANDROID_FLASH,
        ANDROID_FLASH_INFO,
        ANDROID_HOT_PIXEL,
        ANDROID_JPEG,
        ANDROID_LENS,
        ANDROID_LENS_INFO,
        ANDROID_NOISE_REDUCTION,
        ANDROID_QUIRKS,
        ANDROID_REQUEST,
        ANDROID_SCALER,
        ANDROID_SENSOR,
        ANDROID_SENSOR_INFO,
        ANDROID_SHADING,
        ANDROID_STATISTICS,
        ANDROID_STATISTICS_INFO,
        ANDROID_TONEMAP,
        ANDROID_LED,
        ANDROID_INFO,
        ANDROID_BLACK_LEVEL,
        ANDROID_SYNC,
        ANDROID_REPROCESS,
        ANDROID_DEPTH,
        ANDROID_LOGICAL_MULTI_CAMERA,
        ANDROID_DISTORTION_CORRECTION,
        ANDROID_SECTION_COUNT,
    
        VENDOR_SECTION = 0x8000
    } camera_metadata_section_t;
    
    /**
     * Hierarchy positions in enum space. All vendor extension tags must be
     * defined with tag >= VENDOR_SECTION_START
     */
    typedef enum camera_metadata_section_start {
        ANDROID_COLOR_CORRECTION_START = ANDROID_COLOR_CORRECTION  << 16,
        ANDROID_CONTROL_START          = ANDROID_CONTROL           << 16,
        ANDROID_DEMOSAIC_START         = ANDROID_DEMOSAIC          << 16,
        ANDROID_EDGE_START             = ANDROID_EDGE              << 16,
        ANDROID_FLASH_START            = ANDROID_FLASH             << 16,
        ANDROID_FLASH_INFO_START       = ANDROID_FLASH_INFO        << 16,
        ANDROID_HOT_PIXEL_START        = ANDROID_HOT_PIXEL         << 16,
        ANDROID_JPEG_START             = ANDROID_JPEG              << 16,
        ANDROID_LENS_START             = ANDROID_LENS              << 16,
        ANDROID_LENS_INFO_START        = ANDROID_LENS_INFO         << 16,
        ANDROID_NOISE_REDUCTION_START  = ANDROID_NOISE_REDUCTION   << 16,
        ANDROID_QUIRKS_START           = ANDROID_QUIRKS            << 16,
        ANDROID_REQUEST_START          = ANDROID_REQUEST           << 16,
        ANDROID_SCALER_START           = ANDROID_SCALER            << 16,
        ANDROID_SENSOR_START           = ANDROID_SENSOR            << 16,
        ANDROID_SENSOR_INFO_START      = ANDROID_SENSOR_INFO       << 16,
        ANDROID_SHADING_START          = ANDROID_SHADING           << 16,
        ANDROID_STATISTICS_START       = ANDROID_STATISTICS        << 16,
        ANDROID_STATISTICS_INFO_START  = ANDROID_STATISTICS_INFO   << 16,
        ANDROID_TONEMAP_START          = ANDROID_TONEMAP           << 16,
        ANDROID_LED_START              = ANDROID_LED               << 16,
        ANDROID_INFO_START             = ANDROID_INFO              << 16,
        ANDROID_BLACK_LEVEL_START      = ANDROID_BLACK_LEVEL       << 16,
        ANDROID_SYNC_START             = ANDROID_SYNC              << 16,
        ANDROID_REPROCESS_START        = ANDROID_REPROCESS         << 16,
        ANDROID_DEPTH_START            = ANDROID_DEPTH             << 16,
        ANDROID_LOGICAL_MULTI_CAMERA_START
                                       = ANDROID_LOGICAL_MULTI_CAMERA
                                                                    << 16,
        ANDROID_DISTORTION_CORRECTION_START
                                       = ANDROID_DISTORTION_CORRECTION
                                                                    << 16,
        VENDOR_SECTION_START           = VENDOR_SECTION            << 16
    } camera_metadata_section_start_t;

      而每个MODE的END值是根据START后的填充枚举变量偏移所得:

    /**
     * Main enum for defining camera metadata tags.  New entries must always go
     * before the section _END tag to preserve existing enumeration values.  In
     * addition, the name and type of the tag needs to be added to
     * system/media/camera/src/camera_metadata_tag_info.c
     */
    typedef enum camera_metadata_tag {
        ANDROID_COLOR_CORRECTION_MODE =                   // enum         | public       | HIDL v3.2
                ANDROID_COLOR_CORRECTION_START,
        ANDROID_COLOR_CORRECTION_TRANSFORM,               // rational[]   | public       | HIDL v3.2
        ANDROID_COLOR_CORRECTION_GAINS,                   // float[]      | public       | HIDL v3.2
        ANDROID_COLOR_CORRECTION_ABERRATION_MODE,         // enum         | public       | HIDL v3.2
        ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
                                                          // byte[]       | public       | HIDL v3.2
        ANDROID_COLOR_CORRECTION_END,
    
        ANDROID_CONTROL_AE_ANTIBANDING_MODE =             // enum         | public       | HIDL v3.2
                ANDROID_CONTROL_START,
        ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,         // int32        | public       | HIDL v3.2
        ANDROID_CONTROL_AE_LOCK,                          // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AE_MODE,                          // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AE_REGIONS,                       // int32[]      | public       | HIDL v3.2
        ANDROID_CONTROL_AE_TARGET_FPS_RANGE,              // int32[]      | public       | HIDL v3.2
        ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,            // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AF_MODE,                          // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AF_REGIONS,                       // int32[]      | public       | HIDL v3.2
        ANDROID_CONTROL_AF_TRIGGER,                       // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AWB_LOCK,                         // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AWB_MODE,                         // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AWB_REGIONS,                      // int32[]      | public       | HIDL v3.2
        ANDROID_CONTROL_CAPTURE_INTENT,                   // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_EFFECT_MODE,                      // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_MODE,                             // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_SCENE_MODE,                       // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,         // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,   // byte[]       | public       | HIDL v3.2
        ANDROID_CONTROL_AE_AVAILABLE_MODES,               // byte[]       | public       | HIDL v3.2
        ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,   // int32[]      | public       | HIDL v3.2
        ANDROID_CONTROL_AE_COMPENSATION_RANGE,            // int32[]      | public       | HIDL v3.2
        ANDROID_CONTROL_AE_COMPENSATION_STEP,             // rational     | public       | HIDL v3.2
        ANDROID_CONTROL_AF_AVAILABLE_MODES,               // byte[]       | public       | HIDL v3.2
        ANDROID_CONTROL_AVAILABLE_EFFECTS,                // byte[]       | public       | HIDL v3.2
        ANDROID_CONTROL_AVAILABLE_SCENE_MODES,            // byte[]       | public       | HIDL v3.2
        ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
                                                          // byte[]       | public       | HIDL v3.2
        ANDROID_CONTROL_AWB_AVAILABLE_MODES,              // byte[]       | public       | HIDL v3.2
        ANDROID_CONTROL_MAX_REGIONS,                      // int32[]      | ndk_public   | HIDL v3.2
        ANDROID_CONTROL_SCENE_MODE_OVERRIDES,             // byte[]       | system       | HIDL v3.2
        ANDROID_CONTROL_AE_PRECAPTURE_ID,                 // int32        | system       | HIDL v3.2
        ANDROID_CONTROL_AE_STATE,                         // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AF_STATE,                         // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AF_TRIGGER_ID,                    // int32        | system       | HIDL v3.2
        ANDROID_CONTROL_AWB_STATE,                        // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AVAILABLE_HIGH_SPEED_VIDEO_CONFIGURATIONS,
                                                          // int32[]      | hidden       | HIDL v3.2
        ANDROID_CONTROL_AE_LOCK_AVAILABLE,                // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AWB_LOCK_AVAILABLE,               // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AVAILABLE_MODES,                  // byte[]       | public       | HIDL v3.2
        ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST_RANGE, // int32[]      | public       | HIDL v3.2
        ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST,       // int32        | public       | HIDL v3.2
        ANDROID_CONTROL_ENABLE_ZSL,                       // enum         | public       | HIDL v3.2
        ANDROID_CONTROL_AF_SCENE_CHANGE,                  // enum         | public       | HIDL v3.3
        ANDROID_CONTROL_END,
      
      ......

    对应关系如图所示:

      然后在 camera_metadata_tag_info.c 中进行了映射和绑定,前面Native层CameraMetadata_getTagFromKey调用的camera_metadata_section_bounds实现在这里:

    /**
     * ! Do not edit this file directly !
     *
     * Generated automatically from camera_metadata_tag_info.mako
     */
    
    const char *camera_metadata_section_names[ANDROID_SECTION_COUNT] = {
        [ANDROID_COLOR_CORRECTION]     = "android.colorCorrection",
        [ANDROID_CONTROL]              = "android.control",
        [ANDROID_DEMOSAIC]             = "android.demosaic",
        [ANDROID_EDGE]                 = "android.edge",
        [ANDROID_FLASH]                = "android.flash",
        [ANDROID_FLASH_INFO]           = "android.flash.info",
        [ANDROID_HOT_PIXEL]            = "android.hotPixel",
        [ANDROID_JPEG]                 = "android.jpeg",
        [ANDROID_LENS]                 = "android.lens",
        [ANDROID_LENS_INFO]            = "android.lens.info",
        [ANDROID_NOISE_REDUCTION]      = "android.noiseReduction",
        [ANDROID_QUIRKS]               = "android.quirks",
        [ANDROID_REQUEST]              = "android.request",
        [ANDROID_SCALER]               = "android.scaler",
        [ANDROID_SENSOR]               = "android.sensor",
        [ANDROID_SENSOR_INFO]          = "android.sensor.info",
        [ANDROID_SHADING]              = "android.shading",
        [ANDROID_STATISTICS]           = "android.statistics",
        [ANDROID_STATISTICS_INFO]      = "android.statistics.info",
        [ANDROID_TONEMAP]              = "android.tonemap",
        [ANDROID_LED]                  = "android.led",
        [ANDROID_INFO]                 = "android.info",
        [ANDROID_BLACK_LEVEL]          = "android.blackLevel",
        [ANDROID_SYNC]                 = "android.sync",
        [ANDROID_REPROCESS]            = "android.reprocess",
        [ANDROID_DEPTH]                = "android.depth",
        [ANDROID_LOGICAL_MULTI_CAMERA] = "android.logicalMultiCamera",
        [ANDROID_DISTORTION_CORRECTION]
                                        = "android.distortionCorrection",
    };
    
    unsigned int camera_metadata_section_bounds[ANDROID_SECTION_COUNT][2] = {
        [ANDROID_COLOR_CORRECTION]     = { ANDROID_COLOR_CORRECTION_START,
                                           ANDROID_COLOR_CORRECTION_END },
        [ANDROID_CONTROL]              = { ANDROID_CONTROL_START,
                                           ANDROID_CONTROL_END },
        [ANDROID_DEMOSAIC]             = { ANDROID_DEMOSAIC_START,
                                           ANDROID_DEMOSAIC_END },
        [ANDROID_EDGE]                 = { ANDROID_EDGE_START,
                                           ANDROID_EDGE_END },
        [ANDROID_FLASH]                = { ANDROID_FLASH_START,
                                           ANDROID_FLASH_END },
        [ANDROID_FLASH_INFO]           = { ANDROID_FLASH_INFO_START,
                                           ANDROID_FLASH_INFO_END },
        [ANDROID_HOT_PIXEL]            = { ANDROID_HOT_PIXEL_START,
                                           ANDROID_HOT_PIXEL_END },
        [ANDROID_JPEG]                 = { ANDROID_JPEG_START,
                                           ANDROID_JPEG_END },
        [ANDROID_LENS]                 = { ANDROID_LENS_START,
                                           ANDROID_LENS_END },
        [ANDROID_LENS_INFO]            = { ANDROID_LENS_INFO_START,
                                           ANDROID_LENS_INFO_END },
        [ANDROID_NOISE_REDUCTION]      = { ANDROID_NOISE_REDUCTION_START,
                                           ANDROID_NOISE_REDUCTION_END },
        [ANDROID_QUIRKS]               = { ANDROID_QUIRKS_START,
                                           ANDROID_QUIRKS_END },
        [ANDROID_REQUEST]              = { ANDROID_REQUEST_START,
                                           ANDROID_REQUEST_END },
        [ANDROID_SCALER]               = { ANDROID_SCALER_START,
                                           ANDROID_SCALER_END },
        [ANDROID_SENSOR]               = { ANDROID_SENSOR_START,
                                           ANDROID_SENSOR_END },
        [ANDROID_SENSOR_INFO]          = { ANDROID_SENSOR_INFO_START,
                                           ANDROID_SENSOR_INFO_END },
        [ANDROID_SHADING]              = { ANDROID_SHADING_START,
                                           ANDROID_SHADING_END },
        [ANDROID_STATISTICS]           = { ANDROID_STATISTICS_START,
                                           ANDROID_STATISTICS_END },
        [ANDROID_STATISTICS_INFO]      = { ANDROID_STATISTICS_INFO_START,
                                           ANDROID_STATISTICS_INFO_END },
        [ANDROID_TONEMAP]              = { ANDROID_TONEMAP_START,
                                           ANDROID_TONEMAP_END },
        [ANDROID_LED]                  = { ANDROID_LED_START,
                                           ANDROID_LED_END },
        [ANDROID_INFO]                 = { ANDROID_INFO_START,
                                           ANDROID_INFO_END },
        [ANDROID_BLACK_LEVEL]          = { ANDROID_BLACK_LEVEL_START,
                                           ANDROID_BLACK_LEVEL_END },
        [ANDROID_SYNC]                 = { ANDROID_SYNC_START,
                                           ANDROID_SYNC_END },
        [ANDROID_REPROCESS]            = { ANDROID_REPROCESS_START,
                                           ANDROID_REPROCESS_END },
        [ANDROID_DEPTH]                = { ANDROID_DEPTH_START,
                                           ANDROID_DEPTH_END },
        [ANDROID_LOGICAL_MULTI_CAMERA] = { ANDROID_LOGICAL_MULTI_CAMERA_START,
                                           ANDROID_LOGICAL_MULTI_CAMERA_END },
        [ANDROID_DISTORTION_CORRECTION]
                                        = { ANDROID_DISTORTION_CORRECTION_START,
                                           ANDROID_DISTORTION_CORRECTION_END },
    };

      由 tag_info 结构体统一管理:

    static tag_info_t android_color_correction[ANDROID_COLOR_CORRECTION_END -
            ANDROID_COLOR_CORRECTION_START] = {
        [ ANDROID_COLOR_CORRECTION_MODE - ANDROID_COLOR_CORRECTION_START ] =
        { "mode",                          TYPE_BYTE   },
        [ ANDROID_COLOR_CORRECTION_TRANSFORM - ANDROID_COLOR_CORRECTION_START ] =
        { "transform",                     TYPE_RATIONAL
                    },
        [ ANDROID_COLOR_CORRECTION_GAINS - ANDROID_COLOR_CORRECTION_START ] =
        { "gains",                         TYPE_FLOAT  },
        [ ANDROID_COLOR_CORRECTION_ABERRATION_MODE - ANDROID_COLOR_CORRECTION_START ] =
        { "aberrationMode",                TYPE_BYTE   },
        [ ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES - ANDROID_COLOR_CORRECTION_START ] =
        { "availableAberrationModes",      TYPE_BYTE   },
    };
    
    -------------------------------------------------------------
    
    tag_info_t *tag_info[ANDROID_SECTION_COUNT] = {
        android_color_correction,
        android_control,
        android_demosaic,
        android_edge,
        android_flash,
        android_flash_info,
        android_hot_pixel,
        android_jpeg,
        android_lens,
        android_lens_info,
        android_noise_reduction,
        android_quirks,
        android_request,
        android_scaler,
        android_sensor,
        android_sensor_info,
        android_shading,
        android_statistics,
        android_statistics_info,
        android_tonemap,
        android_led,
        android_info,
        android_black_level,
        android_sync,
        android_reprocess,
        android_depth,
        android_logical_multi_camera,
        android_distortion_correction,
    };

     下图是Camera Metadata对不同section以及相应section下不同tag的布局图,以最常见的android.control Section为例进行描述:



      如果要写数据,那么在native同样需要一个CameraMetadata对象,这里是在Java构造CameraMetadataNative时实现的,调用的native接口是nativeAllocate():

    // instance methods
      { "nativeAllocate",
        "()J",
        (void*)CameraMetadata_allocate },
    static jlong CameraMetadata_allocate(JNIEnv *env, jobject thiz) {
        ALOGV("%s", __FUNCTION__);
    
        return reinterpret_cast<jlong>(new CameraMetadata());
    }
    CameraMetadata::CameraMetadata(size_t entryCapacity, size_t dataCapacity) :
            mLocked(false)
    {
        mBuffer = allocate_camera_metadata(entryCapacity, dataCapacity);
    }

      函数allocate_camera_metadata()是重新根据入口数和数据大小计算、申请buffer。紧接着第二个place_camera_metadata()就是对刚申请的buffer,初始化一些变量,为后面更新,插入tag数据做准备。

    camera_metadata_t *allocate_camera_metadata(size_t entry_capacity,
                                                size_t data_capacity) {       //传入的参数是(2,0)
        if (entry_capacity == 0) return NULL;
     
        size_t memory_needed = calculate_camera_metadata_size(entry_capacity, //返回的是header+2*sizeof(entry)大小
                                                              data_capacity);
    void *buffer = malloc(memory_needed); //malloc申请一块连续的内存, return place_camera_metadata(buffer, memory_needed, //并初始化。 entry_capacity, data_capacity); } camera_metadata_t *place_camera_metadata(void *dst, size_t dst_size, size_t entry_capacity, size_t data_capacity) { if (dst == NULL) return NULL; if (entry_capacity == 0) return NULL; size_t memory_needed = calculate_camera_metadata_size(entry_capacity, //再一次计算需要的内存大小,为何?? data_capacity); if (memory_needed > dst_size) return NULL; camera_metadata_t *metadata = (camera_metadata_t*)dst; metadata->version = CURRENT_METADATA_VERSION; //版本号, metadata->flags = 0;//没有排序标志 metadata->entry_count = 0; //初始化entry_count =0 metadata->entry_capacity = entry_capacity; //最大的入口数量,针对ANDROID_FLASH_MODE这里是2个。 metadata->entries_start = ALIGN_TO(sizeof(camera_metadata_t), ENTRY_ALIGNMENT); //entry数据域的开始处紧挨着camera_metadata_t 头部。 metadata->data_count = 0; //初始化为0 metadata->data_capacity = data_capacity; //因为没有申请内存,这里也是0 metadata->size = memory_needed; //总的内存大小 size_t data_unaligned = (uint8_t*)(get_entries(metadata) + metadata->entry_capacity) - (uint8_t*)metadata; metadata->data_start = ALIGN_TO(data_unaligned, DATA_ALIGNMENT); //计算data数据区域的偏移地址。数据区域紧挨着entry区域末尾。 return metadata;
    }

    //根据入口数量和数据数量,计算实际camera_metadata需要的内存块大小(header+sizeof(camera_entry)+sizeof(data)。 size_t calculate_camera_metadata_size(size_t entry_count, size_t data_count) { //针对我们上面讲的例子,传入的参数是(2,0) size_t memory_needed = sizeof(camera_metadata_t); //这里计算header大小了。 // Start entry list at aligned boundary memory_needed = ALIGN_TO(memory_needed, ENTRY_ALIGNMENT); //按字节对齐后的大小 memory_needed += sizeof(camera_metadata_buffer_entry_t[entry_count]); //紧接着是entry数据区的大小了,这里申请了2个entry内存空间。 // Start buffer list at aligned boundary memory_needed = ALIGN_TO(memory_needed, DATA_ALIGNMENT); //同样对齐 memory_needed += sizeof(uint8_t[data_count]); //data_count = 0 return memory_needed; //返回的最后算出的大小 }

      CameraMetadata数据内存块中组成的最小基本单元是struct camera_metadata_buffer_entry,总的entry数目等信息需要struct camera_metadata_t来维护。

      结构图如下:

       在HAL层代码中通过如下方式获取/更新 entry:

    {
                    UINT32                  SensorTimestampTag = 0x000E0010;
                    camera_metadata_entry_t entry              = { 0 };
                    camera_metadata_t* pMetadata                 =
                                const_cast<camera_metadata_t*>(static_cast<const camera_metadata_t*>(pResult->pResultMetadata));
                    UINT64             timestamp = m_shutterTimestamp[applicationFrameNum % MaxOutstandingRequests];
                    INT32 status = find_camera_metadata_entry(pMetadata, SensorTimestampTag, &entry);
    
                    if (-ENOENT == status) //没有查找到tag时,则认为是一个新的tag,需要添加到大数据结构中
                    {
                        status = add_camera_metadata_entry(pMetadata, SensorTimestampTag, &timestamp, 1);
                    }
                    else if (0 == status)
                    {
                        status = update_camera_metadata_entry(pMetadata, entry.index, &timestamp, 1, NULL);
                    }
     }

           find_camera_metadata_entry函数非常好理解,获取对应tag的entry结构体,并将数据保存在entry传入的参数中。
      注:struct camera_metadata_buffer_entry_t; //内部使用记录tag数据
        struct camera_metadata_entry_t;            //外部引用

    int find_camera_metadata_entry(camera_metadata_t *src,
            uint32_t tag,
            camera_metadata_entry_t *entry) {
        if (src == NULL) return ERROR;
     
        uint32_t index;
        if (src->flags & FLAG_SORTED) { //之前初始化时,flags = 0,这里不成立,跳到else处
            // Sorted entries, do a binary search
            camera_metadata_buffer_entry_t *search_entry = NULL;
            camera_metadata_buffer_entry_t key;
            key.tag = tag;
            search_entry = bsearch(&key,
                    get_entries(src),
                    src->entry_count,
                    sizeof(camera_metadata_buffer_entry_t),
                    compare_entry_tags);
            if (search_entry == NULL) return NOT_FOUND;
            index = search_entry - get_entries(src);
        } else {
            // Not sorted, linear search
            camera_metadata_buffer_entry_t *search_entry = get_entries(src);
            for (index = 0; index < src->entry_count; index++, search_entry++) { //这里由于entry_count =0 因为根本就没有添加任何东西。
                if (search_entry->tag == tag) {
                    break;
                }
            }
            if (index == src->entry_count) return NOT_FOUND; //返回NOT_FOUNT
        }
     
        return get_camera_metadata_entry(src, index, //找到index的tag entry
                entry);
    }
     
    int add_camera_metadata_entry(camera_metadata_t *dst,
            uint32_t tag,
            const void *data,
            size_t data_count) { //这里传入的参数为(mBuffer,ANDROID_FLASH_MODE,5,1)
     
        int type = get_camera_metadata_tag_type(tag);
        if (type == -1) {
            ALOGE("%s: Unknown tag %04x.", __FUNCTION__, tag);
            return ERROR;
        }
     
        return add_camera_metadata_entry_raw(dst, //这里传入的参数为(mBuffer,ANDROID_FLASH_MODE,BYTE_TYPE,5,1) DOWN
                tag,
                type,
                data,
                data_count);
    } 
    //下面是真正干实事的方法,这里会将外部传入的tag信息,存放到各自的家中 static int add_camera_metadata_entry_raw(camera_metadata_t *dst, uint32_t tag, uint8_t type, const void *data, size_t data_count) { if (dst == NULL) return ERROR; if (dst->entry_count == dst->entry_capacity) return ERROR; //如果成立,就没有空间了。 if (data == NULL) return ERROR; size_t data_bytes = calculate_camera_metadata_entry_data_size(type, data_count); //计算要使用的内存大小这里1*1,但是返回的是0 if (data_bytes + dst->data_count > dst->data_capacity) return ERROR; //用的空间+当前数据位置指针,不能大于数据最大空间。 size_t data_payload_bytes = data_count * camera_metadata_type_size[type]; //data_count =1,data_payload_bytes =1; camera_metadata_buffer_entry_t *entry = get_entries(dst) + dst->entry_count;//得到当前空闲的entry对象。 memset(entry, 0, sizeof(camera_metadata_buffer_entry_t)); //清0 entry->tag = tag; //ANDROID_FLASH_MODE. entry->type = type; //BYTE_TYPE entry->count = data_count; //没有占用data数据域,这里就是0了。 if (data_bytes == 0) { memcpy(entry->data.value, data, data_payload_bytes); //小于4字节的,直接放到entry数据域。 } else { entry->data.offset = dst->data_count; memcpy(get_data(dst) + entry->data.offset, data, data_payload_bytes); dst->data_count += data_bytes; } dst->entry_count++; //入口位置记录指针+1. dst->flags &= ~FLAG_SORTED; return OK; //到这里ANDROID_FLASH_MODE就添加进去了。 }

      update更新并建立参数过程:CameraMetadata支持不同类型的数据更新或者保存到camera_metadata_t中tag所在的entry当中去,以一个更新单字节的数据为例,data_count指定了数据的个数,而tag指定了要更新的entry。

    status_t CameraMetadata::update(uint32_t tag,
            const int32_t *data, size_t data_count) {
        status_t res;
        if (mLocked) {
            ALOGE("%s: CameraMetadata is locked", __FUNCTION__);
            return INVALID_OPERATION;
        }
        if ( (res = checkType(tag, TYPE_INT32)) != OK) {
            return res;
        }
        return updateImpl(tag, (const void*)data, data_count);
    }

      首先是通过checkType,主要是通过tag找到get_camera_metadata_tag_type其所应当支持的tag_type(因为具体的TAG是已经通过camera_metadata_tag_info.c源文件中的tag_info这个表指定了其应该具备的tag_type),比较两者是否一致,一致后才允许后续的操作。如这里需要TYPE_BYTE一致:

    const char *get_camera_metadata_tag_name(uint32_t tag) {
        uint32_t tag_section = tag >> 16;
        if (tag_section >= VENDOR_SECTION && vendor_tag_ops != NULL) {
            return vendor_tag_ops->get_tag_name(
                vendor_tag_ops,
                tag);
        }
        if (tag_section >= ANDROID_SECTION_COUNT ||
            tag >= camera_metadata_section_bounds[tag_section][1] ) {
            return NULL;
        }
        uint32_t tag_index = tag & 0xFFFF;//取tag在section中的index,低16位
        return tag_info[tag_section][tag_index].tag_name;//定位section然后再说tag
    }
     
    int get_camera_metadata_tag_type(uint32_t tag) {
        uint32_t tag_section = tag >> 16;
        if (tag_section >= VENDOR_SECTION && vendor_tag_ops != NULL) {
            return vendor_tag_ops->get_tag_type(
                vendor_tag_ops,
                tag);
        }
        if (tag_section >= ANDROID_SECTION_COUNT ||
                tag >= camera_metadata_section_bounds[tag_section][1] ) {
            return -1;
        }
        uint32_t tag_index = tag & 0xFFFF;
        return tag_info[tag_section][tag_index].tag_type;
    }

      分别是通过tag取货section id即tag>>16,就定位到所属的section tag_info_t[],再通过在在该section中定位tag index一般是tag&0xFFFF的低16位为在该tag在section中的偏移值,进而找到tag自身的struct tag_info_t.
      updataImpl函数主要是讲所有要写入的数据进行update操作:

    status_t CameraMetadata::updateImpl(uint32_t tag, const void *data,
            size_t data_count) {
        status_t res;
        if (mLocked) {
            ALOGE("%s: CameraMetadata is locked", __FUNCTION__);
            return INVALID_OPERATION;
        }
        int type = get_camera_metadata_tag_type(tag);
        if (type == -1) {
            ALOGE("%s: Tag %d not found", __FUNCTION__, tag);
            return BAD_VALUE;
        }
        size_t data_size = calculate_camera_metadata_entry_data_size(type,
                data_count);
     
        res = resizeIfNeeded(1, data_size);//新建camera_metadata_t
     
        if (res == OK) {
            camera_metadata_entry_t entry;
            res = find_camera_metadata_entry(mBuffer, tag, &entry);
            if (res == NAME_NOT_FOUND) {
                res = add_camera_metadata_entry(mBuffer,
                        tag, data, data_count);//将当前新的tag以及数据加入到camera_metadata_t
            } else if (res == OK) {
                res = update_camera_metadata_entry(mBuffer,
                        entry.index, data, data_count, NULL);
            }
        }
     
        if (res != OK) {
            ALOGE("%s: Unable to update metadata entry %s.%s (%x): %s (%d)",
                    __FUNCTION__, get_camera_metadata_section_name(tag),
                    get_camera_metadata_tag_name(tag), tag, strerror(-res), res);
        }
     
        IF_ALOGV() {
            ALOGE_IF(validate_camera_metadata_structure(mBuffer, /*size*/NULL) !=
                     OK,
     
                     "%s: Failed to validate metadata structure after update %p",
                     __FUNCTION__, mBuffer);
        }
     
        return res;
    }

    流程框图如下:



      最终可以明确的是CameraMetadata相关的参数是被Java层来set/get,但本质是在native层进行了实现,后续如果相关控制参数是被打包到CaptureRequest中时传入到native时即操作的还是native中的CameraMetadata。

    三、设置AF的工作模式示例

      下面以API2中java层中设置AF的工作模式为例,来说明这个参数设置的过程:

    //Java部分代码
    mPreviewBuilder.set(CaptureRequest.CONTROL_AF_MODE, CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE); session.setRepeatingRequest(mPreviewBuilder.build(), mSessionCaptureCallback, mHandler);

      其中CONTROL_AF_MODE定义在CaptureRequest.java中如下以一个Key的形式存在:

    /* @see #CONTROL_AF_MODE_OFF
    * @see #CONTROL_AF_MODE_AUTO
    * @see #CONTROL_AF_MODE_MACRO
    * @see #CONTROL_AF_MODE_CONTINUOUS_VIDEO
    * @see #CONTROL_AF_MODE_CONTINUOUS_PICTURE
    * @see #CONTROL_AF_MODE_EDOF
    */
    public
    static final Key<Integer> CONTROL_AF_MODE = new Key<Integer>("android.control.afMode", int.class);
    public Key(String name, Class<T> type) {
                mKey = new CameraMetadataNative.Key<T>(name, type);
    }

      在CameraMetadataNative.java中Key的构造:

     public Key(String name, Class<T> type) {
                if (name == null) {
                    throw new NullPointerException("Key needs a valid name");
                } else if (type == null) {
                    throw new NullPointerException("Type needs to be non-null");
                }
                mName = name;
                mType = type;
                mTypeReference = TypeReference.createSpecializedTypeReference(type);
                mHash = mName.hashCode() ^ mTypeReference.hashCode();
    }

      其中CONTROL_AF_MODE_CONTINUOUS_PICTURE定义在CameraMetadata.java中

    public static final int CONTROL_AF_MODE_CONTINUOUS_PICTURE = 4;

    逐一定位set的入口:

      a. mPreviewBuilder是CaptureRequest.java的build类,其会构建一个CaptureRequest:

        public Builder(CameraMetadataNative template) {
            mRequest = new CaptureRequest(template);
        }
        private CaptureRequest() {
            mSettings = new CameraMetadataNative();
            mSurfaceSet = new HashSet<Surface>();
        }

      mSetting建立的是一个CameraMetadataNative对象,主要用于和Native层进行接口交互,构造如下:

        public CameraMetadataNative() {
            super();
            mMetadataPtr = nativeAllocate();
            if (mMetadataPtr == 0) {
                throw new OutOfMemoryError("Failed to allocate native CameraMetadata");
            }
        }

      b. CaptureRequest.Build.set()

        public <T> void set(Key<T> key, T value) {
            mRequest.mSettings.set(key, value);
        }
        public <T> void set(CaptureRequest.Key<T> key, T value) {
            set(key.getNativeKey(), value);
        }

      考虑到CaptureRequest extend CameraMetadata,则CaptureRequest.java中getNativeKey:

        public CameraMetadataNative.Key<T> getNativeKey() {
            return mKey;
        }

      mKey即为之前构造的CameraMetadataNative.Key:

        public <T> void set(Key<T> key, T value) {
            SetCommand s = sSetCommandMap.get(key);
            if (s != null) {
                s.setValue(this, value);
                return;
            }
            setBase(key, value);
        }
        private <T> void setBase(Key<T> key, T value) {
            int tag = key.getTag();
     
            if (value == null) {
                // Erase the entry
                writeValues(tag, /*src*/null);
                return;
            } // else update the entry to a new value
     
            Marshaler<T> marshaler = getMarshalerForKey(key);
            int size = marshaler.calculateMarshalSize(value);
     
            // TODO: Optimization. Cache the byte[] and reuse if the size is big enough.
            byte[] values = new byte[size];
     
            ByteBuffer buffer = ByteBuffer.wrap(values).order(ByteOrder.nativeOrder());
            marshaler.marshal(value, buffer);
     
            writeValues(tag, values);
        }

      首先来看key.getTag()函数的实现,他是将这个key交由Native层后转为一个真正的在Java层中的tag值:

        public final int getTag() {
            if (!mHasTag) {
                mTag = CameraMetadataNative.getTag(mName);
                mHasTag = true;
            }
            return mTag;
        }
        public static int getTag(String key) {
            return nativeGetTagFromKey(key);
        }

      是将Java层的String交由Native来转为一个Java层的tag值。

      再来看writeValues的实现,同样调用的是一个native接口,很好的阐明了CameraMetadataNative的意思:

        public void writeValues(int tag, byte[] src) {
            nativeWriteValues(tag, src);
        }

      同样和开头native层代码部分对应起来了。

    -end-

  • 相关阅读:
    牛客(46)孩子们的游戏(圆圈中最后剩下的数)
    牛客(45)扑克牌顺子
    牛客(44)翻转单词顺序列
    牛客(43)左旋转字符串
    牛客(42)和为S的两个数字
    牛客(41)和为S的连续正数序列
    牛客(40)数组中只出现一次的数字
    牛客(39)平衡二叉树
    牛客(38)二叉树的深度
    牛客(37)数字在排序数组中出现的次数
  • 原文地址:https://www.cnblogs.com/blogs-of-lxl/p/10981303.html
Copyright © 2011-2022 走看看