zoukankan      html  css  js  c++  java
  • LeetCode 746. Min Cost Climbing Stairs

    746. Min Cost Climbing Stairs (使用最小花费爬楼梯)

    链接

    https://leetcode-cn.com/problems/min-cost-climbing-stairs

    题目

    数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 costi

    每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。

    您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。

    示例 1:

    输入: cost = [10, 15, 20]
    输出: 15
    解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
    

    示例 2:

    输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
    输出: 6
    解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
    

    注意:

    cost 的长度将会在 [2, 1000]。
    每一个 cost[i] 将会是一个Integer类型,范围为 [0, 999]。

    思路

    动态规划题目,上升到某级(i)有两种方法,从i-1级上一步,从i-2级上两步,那么就可以知道状态转移方程了
    dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i],顺着这个思路从3开始,最后再输出一下就行。

    代码:

      public int minCostClimbingStairs(int[] cost) {
        int len = cost.length;
        int dp[] = new int[len + 1];
    
        dp[0] = cost[0];
        dp[1] = cost[1];
        for (int i = 2; i < len; i++) {
          dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];
        }
        return Math.min(dp[len - 1], dp[len - 2]);
      }
    
  • 相关阅读:
    ext DateTime.js在ie下显示不全
    js 获得每周周日到周一日期
    近十年one-to-one最短路算法研究整理【转】
    虚函数(实现多态)
    函数调用机制2
    函数调用机制
    面向对象的三大特性
    矩阵类c++实现
    矩阵求逆c++实现
    解决文件大小上传限制
  • 原文地址:https://www.cnblogs.com/blogxjc/p/12371451.html
Copyright © 2011-2022 走看看