zoukankan      html  css  js  c++  java
  • spark stream初探

    spark带了一个NetworkWordCount测试程序,用以统计来自某TCP连接的单词输入:

    /usr/local/spark/bin/run-example streaming.NetworkWordCount localhost 9999

    再启动netcat:
    nc -lk 9999

    尝试输入一些单词:

    hello world
    damn it

    可以看到NetworkWordCount产生如下输出:

    -------------------------------------------
    Time: 1425866862000 ms
    -------------------------------------------
    (world,1)
    (hello,1)
    -------------------------------------------
    Time: 1425866877000 ms
    -------------------------------------------
    (damn,1)
    (it,1)

    也可以手动在shell里输入NetworkWordCount的代码:

    scala> :paste
    // Entering paste mode (ctrl-D to finish)
    
    import org.apache.spark._
    import org.apache.spark.streaming._
    import org.apache.spark.streaming.StreamingContext._
    
    // Create a local StreamingContext with two working thread and batch interval of 1 second.
    // The master requires 2 cores to prevent from a starvation scenario.
    
    val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
    val ssc = new StreamingContext(conf, Seconds(1))
    // Create a DStream that will connect to hostname:port, like localhost:9999
    val lines = ssc.socketTextStream("localhost", 9999)
    // Split each line into words
    val words = lines.flatMap(_.split(" "))
    val pairs = words.map(word => (word, 1))
    val wordCounts = pairs.reduceByKey(_ + _)
    
    // Print the first ten elements of each RDD generated in this DStream to the console
    wordCounts.print()
    ssc.start()             // Start the computation
    ssc.awaitTermination()  // Wait for the computation to terminate

    执行后,即可在屏幕上得到类似的输出。

  • 相关阅读:
    overflow 溢出
    float1
    AI赋能测试_API测试
    AI赋能测试_APP测试智能化
    最最最基础题应知应会题目_1_排序_下载图片
    AI赋能测试_遗传算法应用
    PAI使用方法
    nlu模型测试集构建语料多样性
    机器学习基础功能练习II
    python机器学习数据绘图总结
  • 原文地址:https://www.cnblogs.com/bluejoe/p/5115854.html
Copyright © 2011-2022 走看看