Given a positive integer n, write a program to find out a nonzero multiple m of n whose decimal representation contains only the digits 0 and 1. You may assume that n is not greater than 200 and there is a corresponding m containing no more than 100 decimal digits.
Input The input file may contain multiple test cases. Each line contains a value of n (1 ≤ n ≤ 200). A line containing a zero (0) terminates the input.
Output For each value of n in the input print a line containing the corresponding value of m. The decimal representation of m must not contain more than 100 digits. If there are multiple solutions for a given value of n, any one of them is acceptable.
Sample Input 2 6 19 0
Sample Output
10
100100100100100100
111111111111111111
个人心得:这题开始没看懂,原来是求所求数的倍数,但这个倍数只由0,1组成,有俩种版本,一个是longlong直接过,这个在数据较多的时候不容易过,
先说下longlong吧,就是从1开始深搜,有2种方向,一是乘以10,二是乘以10再加1,这个简单深搜还是比较好实现的。
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<cmath> 5 #include<queue> 6 #include<algorithm> 7 using namespace std; 8 int n,flag; 9 unsigned long long ans; 10 void dfs(unsigned long long x,int y) 11 { 12 if(y>19) return ; 13 if(x%n==0) 14 { 15 flag=1; 16 ans=x; 17 return; 18 19 } 20 else 21 {for(int i=0;i<2;i++) 22 dfs(10*x+i,y+1); 23 } 24 if(flag) return; 25 26 27 } 28 int main() 29 { 30 unsigned long long x; 31 while(cin>>n) 32 { 33 if(n==0) break; 34 x=1; 35 flag=0; 36 dfs(x,0); 37 cout<<ans<<endl; 38 39 40 } 41 return 0; 42 43 }
再看一下数组存储的代码,他这个涉及到的知识点真的不知道,每次得到新数都进行取余再将这个数放入数组里,这样就不会数据溢出了,一开始想这么做怕担心
数据会溢出。
1 #include <iostream> 2 3 4 5 using namespace std; 6 7 8 9 int n, t, a[100], ac,l; 10 11 12 13 void dfs(int c, int s) 14 15 { 16 17 if(s==0)//如果余数为0,择停止递归 18 19 { 20 21 ac = 1;//表示已经找到结果 22 23 l=c;//给数组的长度赋值 24 25 } 26 27 else if(c < 100)//在深度100范围内进行递归 28 29 { 30 31 if(ac==0)//还没找到结果,进行递归运算 32 33 { 34 35 a[c] = 1;//尝试下一位放1 36 37 dfs(c + 1, (s * 10 + 1) % n); 38 39 } 40 41 if(ac==0) 42 43 { 44 45 a[c] = 0; 46 47 dfs(c + 1, (s * 10) % n); 48 49 } 50 51 } 52 53 } 54 55 56 57 int main() 58 59 { 60 61 while(cin>>n,n) 62 63 { 64 65 a[0] = 1, ac = 0;//初始化 66 67 dfs(1, 1); 68 69 for(int i=0;i<l;i++) cout<<a[i];//根据递归得到的结果,进行输出 70 71 cout<<endl; 72 73 } 74 75 return 0; 76 77 } 78 79