zoukankan      html  css  js  c++  java
  • POJ_2109 Power of Cryptography 数学

    题目链接:http://poj.org/problem?id=2109

    参考链接:http://blog.csdn.net/synapse7/article/details/11672691

    乍一看似乎高精度,但是double足矣。。。。。15位有效数字, 指数范围-307~308(10位基数)

    代码:

    1 int main(){
    2     double n, p;
    3     while(scanf("%lf %lf", &n, &p) == 2){
    4         double k = pow(p, 1 / n);
    5         printf("%.0f
    ", k);
    6     }
    7     
    8 }

    题目:

    Power of Cryptography
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 25135   Accepted: 12605

    Description

    Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
    This problem involves the efficient computation of integer roots of numbers. 
    Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the nth. power, for an integer k (this integer is what your program must find).

    Input

    The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10101 and there exists an integer k, 1<=k<=109 such that kn = p.

    Output

    For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

    Sample Input

    2 16
    3 27
    7 4357186184021382204544

    Sample Output

    4
    3
    1234
  • 相关阅读:
    bzoj4849: [Neerc2016]Mole Tunnels
    bzoj 4069~4071 APIO2015
    bzoj 4885: [Lydsy2017年5月月赛]长方体
    bzoj4891: [Tjoi2017]龙舟
    bzoj4892: [Tjoi2017]dna
    bzoj 3159: 决战
    bzoj3672: [Noi2014]购票
    bzoj4738: 汽水
    bzoj 4737: 组合数问题
    bzoj 4872: [Shoi2017]分手是祝愿
  • 原文地址:https://www.cnblogs.com/bolderic/p/6843899.html
Copyright © 2011-2022 走看看