zoukankan      html  css  js  c++  java
  • CS Academy Gcd Rebuild

    题目链接https://csacademy.com/contest/archive/task/gcd-rebuild/statement/

    题目大意:给出一个N*M的矩阵,其中第i行j列表示gcd(a[i], b[j]),现在不知道数组a,b,给出这个矩阵,求a,b。如果多组解,输出其中一组,若无解,输出-1.

    解题思路:观察观察(真的是观察出来的),发现如果有解,那么可以按照如下方式构造解:

    1 for(int i = 1; i <= n; i++){
    2     ll tmp = 1, la;
    3     for(int j = 1; j <= m; j++){
    4         la = tmp;
    5         tmp *= c[i][j];
    6         tmp /= gcd(la, c[i][j]);
    7     }
    8     a[i] = tmp;
    9 }

    对于每一列也是同样的方式。构造之后判断一下是否符合条件即可。

    代码:

     1 const int maxn = 3e2 + 5;
     2 int n, m;
     3 ll c[maxn][maxn];
     4 ll a[maxn], b[maxn];
     5 
     6 ll gcd(ll x, ll y){
     7     return y == 0? x: gcd(y, x % y);
     8 }
     9 void solve(){
    10     for(int i = 0; i <= n; i++) c[i][0] = c[0][i] = 1;
    11     bool flag = true;
    12     for(int i = 1; i <= n; i++){
    13         ll tmp = 1, la;
    14         for(int j = 1; j <= m; j++){
    15             la = tmp;
    16             tmp *= c[i][j];
    17             tmp /= gcd(la, c[i][j]);
    18         }
    19         a[i] = tmp;
    20         if(a[i] > 1e9) {
    21             flag = false;
    22             break;
    23         }
    24     }
    25     if(!flag){
    26         puts("-1");
    27         return;
    28     }
    29     for(int i = 1; i <= m; i++){
    30         ll tmp = 1, la;
    31         for(int j = 1; j <= n; j++){
    32             la = tmp;
    33             tmp *= c[j][i];
    34             tmp /= gcd(c[j][i], la);
    35         }
    36         b[i] = tmp;
    37         if(b[i] > 1e9) {
    38             flag = false;
    39             break;
    40         }
    41     }
    42     if(!flag){
    43         puts("-1");
    44         return;
    45     }
    46     for(int i = 1; i <= n; i++){
    47         for(int j = 1; j <= m; j++){
    48             if(c[i][j] != gcd(a[i], b[j])){
    49                 flag = false;
    50                 break;
    51             }
    52         }
    53         if(!flag) break;
    54     }
    55     if(!flag){
    56         puts("-1");
    57         return;
    58     }
    59     for(int i = 1; i <= n; i++) printf("%lld ", a[i]);
    60     puts("");
    61     for(int i = 1; i <= m; i++) printf("%lld ", b[i]);
    62 }
    63 int main(){
    64     scanf("%d %d", &n, &m);
    65     for(int i = 1; i <= n; i++){
    66         for(int j = 1; j <= m; j++){
    67             scanf("%lld", &c[i][j]);
    68         }
    69     }
    70     solve();
    71 }

    题目:

    Gcd Rebuild

    Time limit: 1000 ms
    Memory limit: 256 MB

     

    Consider two arrays: VV of size NN and UU of size MM. The elements of both arrays are integers between 11 and 10^9109​​.

    You are given a matrix AA where A_{i,j} = gcd(V_i, U_j)Ai,j​​=gcd(Vi​​,Uj​​) and gcdgcd refers to the greatest common divisor. You are asked to find VV and UU.

    Standard input

    The first line contains two integers NN and MM.

    Each of the next NN lines contains MM integers, representing the elements of AA.

    Standard output

    If there is no solution, or you cannot find a solution where the elements of VV and UU are in the range [1, 10^9][1,109​​], output -11.

    Otherwise, print the NN elements of VV on the first line and the MM elements of UU on the second line. If the solution is not unique you can output any of them.

    Constraints and notes

    • 1 leq N, M leq 3001N,M30
    • 1 leq A_{i, j} leq 10^91Ai,j​​109​​ 
    InputOutputExplanation
    3 3
    1 2 2
    3 2 2
    3 1 1
    
    2 6 3 
    3 2 2 
    

    gcd(2, 3)=1gcd(2,3)=1

    gcd(2, 2)=2gcd(2,2)=2

    gcd(6, 3)=3gcd(6,3)=3

    gcd(6, 2)=2gcd(6,2)=2

    gcd(3, 3)=3gcd(3,3)=3

    gcd(3, 2)=1gcd(3,2)=1

    3 2
    2 2
    2 2
    4 2
    
    2 2 4 
    4 2 
    

    gcd(2, 2)=2gcd(2,2)=2

    gcd(2, 4)=2gcd(2,4)=2

    gcd(4, 4)=4gcd(4,4)=4

    2 2
    1 1
    1 1
    
    1 1 
    1 1 
    

    gcd(1, 1)=1gcd(1,1)=1

    3 3
    4 2 4
    2 4 2
    4 2 4
    
    -1
    

    There is no solution

  • 相关阅读:
    IIS应用程序池标识(程序池账户)ApplicationPoolIdentify
    笔记二 sql 基础知识
    笔记三 索引讲解
    SqlParameter使用参数错误,提示请求超时或则查询速度过慢
    SVN 常见操作
    Excel 基本操作
    sql server row_number分页排序
    本地部署IIS
    sql中去掉字段的所有空格
    sql取逗号前后数据与批量修改某一字段某一值
  • 原文地址:https://www.cnblogs.com/bolderic/p/7500447.html
Copyright © 2011-2022 走看看