1,全卷积网络(FCN)的简单介绍
1.1 CNN与FCN的比较
CNN:在传统的CNN网络中,在最后的卷积层之后会连接上若干个全连接层,将卷积层产生的特征图(feature map)映射成为一个固定长度的特征向量。一般的CNN结构适用于图像级别的分类和回归任务,因为它们最后都期望得到输入图像的分类的概率,如AlexNet网络最后输出一个1000维的向量表示输入图像属于每一类的概率。如下图所示:
在CNN中,猫的图片输入到AlexNet,得到一个长为1000的输出向量,表述输入图像属于每一类的概率,其中在“tabby cat”这一类统计概率最高,用来做分类任务。
FCN:FCN是对图像进行像素级的分类(也就是每个像素点都进行分类),从而解决了语义级别的图像分割问题。与上面介绍的经典CNN在卷积层使用全连接层得到固定长度的特征向量不同,FCN可以输入任意尺寸的输入图像,采用反卷积层对最后一个卷积层的特征图(feature map)进行上采样,使它恢复到输入图像相同的尺寸,从而可以对每一个像素都产生一个预测,同时保留了原始输入图像中的空间信息,最后奇偶在上采样的特征图进行像素的分类。如下图所示:
简单的说,FCN与CNN的区别在于FCN把CNN最后的全连接层换成卷积层,其输出的是一张已经标记好的图,而不是一个概率值。
2,FCN上采样理论讲解
FCN网络一般是用来对图像进行语义分割的,于时就需要对图像上的各个像素进行分类,这就需要一个上采样将最后得到的输出上采样到原图大小。上采样对于低分辨率的特征图,尝尝采用上采样的方式将它还原高分辨率,这里陈述上采样的三种方法。
2.1 双线性插值上采样
2.2 反卷积上采样
怎样上采样:普通的卷积操作,会使得分辨率降低,如下图3*3的卷积核去卷积4*4得到2*2的输出。
上采样的过程也是卷积,那么怎么会得到分辨率提高呢?之前我们看卷积时有个保持输出与输入同分辨率的方法就是周围补0.
其实上面这种补0的方法事有问题的,你想一下,只在四周补0会导致最边上的信息不太好,那我们把这个信息平均下,在每个像素与像素之间补0,如下图所示:
2.3 反池化上采样
反池化可以用下图来理解,再池化时需要记录下池化的位置,反池化时把池化的位置直接还原,其他位置填0。
上面三种方法各有优缺,双线性插值方法实现简单,无需训练;反卷积上采样需要训练,但能更好的还原特征图;
2, FCN具体实现过程
FCN与CNN的核心区别就是FCN将CNN末尾的全连接层转化成了卷积层:以Alexnet为例,输入是2272273的图像,前5层是卷积层,第5层的输出是256个特征图,大小是66,即25666,第6、7、8层分别是长度是4096、4096、1000的一维向量。如下图所示:
在FCN中第6、7、8层都是通过卷积得到的,卷积核的大小全部是1 * 1,第6层的输出是4096 * 7 * 7,第7层的输出是4096 * 7 * 7,第8层的输出是1000 * 7 * 7(7是输入图像大小的1/32),即1000个大小是77的特征图(称为heatmap),如下图所示:
经过多次卷积后,图像的分辨率越来越低,为了从低分辨率的热图heatmap恢复到原图大小,以便对原图上每一个像素点进行分类预测,需要对热图heatmap进行反卷积,也就是上采样。论文中首先进行了一个上池化操作,再进行反卷积(上述所提到的上池化操作和反卷积操作,其实可以理解为上卷积操作),使得图像分辨率提高到原图大小。如下图所示:
跳级(strip)结构:对第5层的输出执行32倍的反卷积得到原图,得到的结果不是很精确,论文中同时执行了第4层和第3层输出的反卷积操作(分别需要16倍和8倍的上采样),再把这3个反卷积的结果图像融合,提升了结果的精确度:
最后像素的分类按照该点在1000张上采样得到的图上的最大的概率来定。FCN可以接受任意大小的输入图像,但是FCN的分类结果还是不够精细,对细节不太敏感,再者没有考虑到像素与像素之间的关联关系,丢失了部分空间信息。
3,FCN模型简单总结
缺点:
- 得到的结果还是不够精细。进行8倍上采样虽然比32倍的效果好了很多,但是上采样的结果还是比较模糊和平滑,对图像中的细节不敏感
- 对各个像素进行分类,没有充分考虑像素与像素之间的关系。忽略了在通常的基于像素分类的分割方法中使用的空间规整(spatial regularization)步骤,缺乏空间一致性
FCN的卷积网络部分可以采用VGG、GoogleNet、AlexNet等作为前置基础网络,在这些的预训练基础上进行迁移学习与finetuning,对反卷积的结果跟对应的正向feature map进行叠加输出(这样做的目的是得到更加准确的像素级别分割),根据上采样的倍数不一样分为FCN-8S、FCN-16S、FCN-32S
转自:https://blog.csdn.net/qq_41760767/article/details/97521397