zoukankan      html  css  js  c++  java
  • leetcode Kth Largest Element in a Stream——要熟悉heapq使用

    703. Kth Largest Element in a Stream
    Easy

    Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.

    Your KthLargest class will have a constructor which accepts an integer k and an integer array nums, which contains initial elements from the stream. For each call to the method KthLargest.add, return the element representing the kth largest element in the stream.

    Example:

    int k = 3;
    int[] arr = [4,5,8,2];
    KthLargest kthLargest = new KthLargest(3, arr);
    kthLargest.add(3);   // returns 4
    kthLargest.add(5);   // returns 5
    kthLargest.add(10);  // returns 5
    kthLargest.add(9);   // returns 8
    kthLargest.add(4);   // returns 8
    

    Note:
    You may assume that nums' length ≥ k-1 and k ≥ 1.

     
    """
     1 import heapq
     2 def heapsort(iterable):
     3     h = []
     4     for i in iterable:
     5         heapq.heappush(h, i)
     6     return [heapq.heappop(h) for i in range(len(h))]
     7 
     8 # method 1: sort to list
     9 s = [3, 5, 1, 2, 4, 6, 0, 1]
    10 print(heapsort(s))
    11 '''
    12 [0, 1, 1, 2, 3, 4, 5, 6]
    13 '''
    """
    import heapq
    
    class KthLargest(object):
    
        def __init__(self, k, nums):
            """
            :type k: int
            :type nums: List[int]
            """
            self.arr = []
            self.k = k
            for i in nums:
                if len(self.arr) < self.k:
                    heapq.heappush(self.arr, i)
                else:
                    if i > self.arr[0]:
                    #if heapq.nsmallest(1, self.arr)[0] < i:
                        heapq.heapreplace(self.arr, i)
                        #heapq.heappop(self.arr)
                        #heapq.heappush(self.arr, i)
    
    
        def add(self, val):
            """
            :type val: int
            :rtype: int
            """
            if len(self.arr) < self.k:
                heapq.heappush(self.arr, val)
            else:
                if val > self.arr[0]:
                #if heapq.nsmallest(1, self.arr)[0] < val:
                    heapq.heapreplace(self.arr, val)
                    #heapq.heappop(self.arr)
                    #heapq.heappush(self.arr, val)            
            assert len(self.arr) == self.k
            return self.arr[0]
            #return heapq.nsmallest(1, self.arr)[0]
                
    
    
    # Your KthLargest object will be instantiated and called as such:
    # obj = KthLargest(k, nums)
    # param_1 = obj.add(val)
    

    注意:如果使用heapq.nsmallest(1, self.arr)[0]来返回heap的最小值会有超时问题。

  • 相关阅读:
    mysql--数据库的基本操作(二)
    mysql--数据库剧本指令操作
    poj_3461 KMP算法解析
    POJ_3122 经典二分题
    LIS(最长上升子序列)的 DP 与 (贪心+二分) 两种解法
    HDU_1059 多重背包问题
    HDU-1114 完全背包+恰好装满问题
    HDU _2546 01背包问题
    POJ-1611 并查集
    HDU——Monkey and Banana 动态规划
  • 原文地址:https://www.cnblogs.com/bonelee/p/10090580.html
Copyright © 2011-2022 走看看