zoukankan      html  css  js  c++  java
  • python deque的内在实现 本质上就是双向链表所以用于stack、队列非常方便

    How collections.deque works?

     

    前言:在 Python 生态中,我们经常使用 collections.deque 来实现栈、队列这些只需要进行头尾操作的数据结构,它的 append/pop 操作都是 O(1) 时间复杂度。list 的 pop(0) 的时间复杂度是 O(n), 在这个场景中,它的效率没有 deque 高。那 deque 内部是怎样实现的呢? 我从 GitHub 上挖出了 CPython collections 模块的第二个 commit 的源码。

    dequeobject 对象定义

    注释写得优雅了,无法进行更加精简的总结。

    /* The block length may be set to any number over 1.  Larger numbers
     * reduce the number of calls to the memory allocator but take more
     * memory.  Ideally, BLOCKLEN should be set with an eye to the
     * length of a cache line.
     */
    
    #define BLOCKLEN 62
    #define CENTER ((BLOCKLEN - 1) / 2)
    
    /* A `dequeobject` is composed of a doubly-linked list of `block` nodes.
     * This list is not circular (the leftmost block has leftlink==NULL,
     * and the rightmost block has rightlink==NULL).  A deque d's first
     * element is at d.leftblock[leftindex] and its last element is at
     * d.rightblock[rightindex]; note that, unlike as for Python slice
     * indices, these indices are inclusive on both ends.  By being inclusive
     * on both ends, algorithms for left and right operations become
     * symmetrical which simplifies the design.
     *
     * The list of blocks is never empty, so d.leftblock and d.rightblock
     * are never equal to NULL.
     *
     * The indices, d.leftindex and d.rightindex are always in the range
     *     0 <= index < BLOCKLEN.
     * Their exact relationship is:
     *     (d.leftindex + d.len - 1) % BLOCKLEN == d.rightindex.
     *
     * Empty deques have d.len == 0; d.leftblock==d.rightblock;
     * d.leftindex == CENTER+1; and d.rightindex == CENTER.
     * Checking for d.len == 0 is the intended way to see whether d is empty.
     *
     * Whenever d.leftblock == d.rightblock,
     *     d.leftindex + d.len - 1 == d.rightindex.
     *
     * However, when d.leftblock != d.rightblock, d.leftindex and d.rightindex
     * become indices into distinct blocks and either may be larger than the
     * other.
     */
    
    typedef struct BLOCK {
        struct BLOCK *leftlink;
        struct BLOCK *rightlink;
        PyObject *data[BLOCKLEN];
    } block;
    
    typedef struct {
        PyObject_HEAD
        block *leftblock;
        block *rightblock;
        int leftindex;  /* in range(BLOCKLEN) */
        int rightindex; /* in range(BLOCKLEN) */
        int len;
        long state; /* incremented whenever the indices move */
        PyObject *weakreflist; /* List of weak references */
    } dequeobject;

    下面是我为 Block 结构体画的一个图

                    +----------------------------------------+
                    |          data: 62 objects              |
     +----------+   |                                        |   +-----------+
     | leftlink |---|  | ... | Obj1 | Obj2 | Obj3 | ... |    |---| rightlink |
     +----------+   |           30     31     32             |   +-----------+
                    +----------------------------------------+

    创建一个 block

    static block *
    newblock(block *leftlink, block *rightlink, int len) {
        block *b;
        /* To prevent len from overflowing INT_MAX on 64-bit machines, we
         * refuse to allocate new blocks if the current len is dangerously
         * close.  There is some extra margin to prevent spurious arithmetic
         * overflows at various places.  The following check ensures that
         * the blocks allocated to the deque, in the worst case, can only
         * have INT_MAX-2 entries in total.
         */
        if (len >= INT_MAX - 2*BLOCKLEN) {
            PyErr_SetString(PyExc_OverflowError,
                    "cannot add more blocks to the deque");
            return NULL;
        }
        b = PyMem_Malloc(sizeof(block));
        if (b == NULL) {
            PyErr_NoMemory();
            return NULL;
        }
        b->leftlink = leftlink;
        b->rightlink = rightlink;
        return b;
    }

    创建一个 dequeobject

    1. 创建一个 block
    2. 实例化一个 dequeobject Python 对象(这一块的内在逻辑目前我也不太懂)
    3. leftblock 和 rightblock 指针都指向这个 block
    4. leftindex 是 CENTER+1,rightindex 是 CENTER
    5. 初始化其他一些属性, len state 等

    这个第一步和第四步都有点意思,第一步创建一个 block,也就是说, deque 对象创建的时候,就预先分配了一块内存。第四步隐约告诉我们, 当元素来的时候,它先会被放在中间,然后逐渐往头和尾散开。

    static PyObject *
    deque_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
    {
        dequeobject *deque;
        block *b;
    
        if (type == &deque_type && !_PyArg_NoKeywords("deque()", kwds))
            return NULL;
    
        /* create dequeobject structure */
        deque = (dequeobject *)type->tp_alloc(type, 0);
        if (deque == NULL)
            return NULL;
    
        b = newblock(NULL, NULL, 0);
        if (b == NULL) {
            Py_DECREF(deque);
            return NULL;
        }
    
        assert(BLOCKLEN >= 2);
        deque->leftblock = b;
        deque->rightblock = b;
        deque->leftindex = CENTER + 1;
        deque->rightindex = CENTER;
        deque->len = 0;
        deque->state = 0;
        deque->weakreflist = NULL;
    
        return (PyObject *)deque;
    }

    deque.append 实现

    步骤:

    1. 如果 rightblock 可以容纳更多的元素,则放在 rightblock 中
    2. 如果不能,就新建一个 block,然后更新若干指针,将元素放在更新后的 rightblock 中
    static PyObject *
    deque_append(dequeobject *deque, PyObject *item)
    {
        deque->state++;
        if (deque->rightindex == BLOCKLEN-1) {
            block *b = newblock(deque->rightblock, NULL, deque->len);
            if (b == NULL)
                return NULL;
            assert(deque->rightblock->rightlink == NULL);
            deque->rightblock->rightlink = b;
            deque->rightblock = b;
            deque->rightindex = -1;
        }
        Py_INCREF(item);
        deque->len++;
        deque->rightindex++;
        deque->rightblock->data[deque->rightindex] = item;
        Py_RETURN_NONE;
    }

    看了 append 实现后,我们可以自行脑补一下 pop 和 popleft 的实现。

    小结

    deque 内部将一组内存块组织成双向链表的形式,每个内存块可以看成一个 Python 对象的数组, 这个数组与普通数据不同,它是从数组中部往头尾两边填充数据,而平常所见数组大都是从头往后。 得益于 deque 这样的结构,它的 pop/popleft/append/appendleft 四种操作的时间复杂度均是 O(1), 用它来实现队列、栈数据结构会非常方便和高效。但也正因为这样的设计, 它不能像数组那样通过 index 来访问、移除元素。链表 + 数组、或者链表 + 字典 这样的设计在实践中有很广泛的应用,比如 LRUCache, LFUCache,有兴趣的同鞋可以继续探索。

    • PS1: LRUCache 在面试中不要太常见
    • PS2: 出 LFUCache 题的面试官都是变态
    • PS3: 头图来自 quora ,图文不怎么有关系列
  • 相关阅读:
    github克隆镜像
    python2安装pip(get-pip.py)和pip更新源
    GitHack使用—create_unverified_context报错
    XCTF:shrine(Flask模块注入)
    开机自启动(C#)
    操作xml(C#)
    隐藏到托盘(C#)
    火狐浏览器下请求两次(C#)
    Nancy学习笔记
    jquery纵向抽屉式导航栏
  • 原文地址:https://www.cnblogs.com/bonelee/p/11433743.html
Copyright © 2011-2022 走看看