zoukankan      html  css  js  c++  java
  • 利用开源数据集进行钓鱼邮件检测——数据量还是很少啊,黑+白1万多条

    数据集合:https://archive.ics.uci.edu/ml/datasets/Phishing+Websites

    示例格式如下:

    @relation phishing
    
    @attribute having_IP_Address  { -1,1 }
    @attribute URL_Length   { 1,0,-1 }
    @attribute Shortining_Service { 1,-1 }
    @attribute having_At_Symbol   { 1,-1 }
    @attribute double_slash_redirecting { -1,1 }
    @attribute Prefix_Suffix  { -1,1 }
    @attribute having_Sub_Domain  { -1,0,1 }
    @attribute SSLfinal_State  { -1,1,0 }
    @attribute Domain_registeration_length { -1,1 }
    @attribute Favicon { 1,-1 }
    @attribute port { 1,-1 }
    @attribute HTTPS_token { -1,1 }
    @attribute Request_URL  { 1,-1 }
    @attribute URL_of_Anchor { -1,0,1 }
    @attribute Links_in_tags { 1,-1,0 }
    @attribute SFH  { -1,1,0 }
    @attribute Submitting_to_email { -1,1 }
    @attribute Abnormal_URL { -1,1 }
    @attribute Redirect  { 0,1 }
    @attribute on_mouseover  { 1,-1 }
    @attribute RightClick  { 1,-1 }
    @attribute popUpWidnow  { 1,-1 }
    @attribute Iframe { 1,-1 }
    @attribute age_of_domain  { -1,1 }
    @attribute DNSRecord   { -1,1 }
    @attribute web_traffic  { -1,0,1 }
    @attribute Page_Rank { -1,1 }
    @attribute Google_Index { 1,-1 }
    @attribute Links_pointing_to_page { 1,0,-1 }
    @attribute Statistical_report { -1,1 }
    @attribute Result  { -1,1 }
    
    
    @data
    -1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,0,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1
    1,1,1,1,1,-1,0,1,-1,1,1,-1,1,0,-1,-1,1,1,0,1,1,1,1,-1,-1,0,-1,1,1,1,-1
    1,0,1,1,1,-1,-1,-1,-1,1,1,-1,1,0,-1,-1,-1,-1,0,1,1,1,1,1,-1,1,-1,1,0,-1,-1
    1,0,1,1,1,-1,-1,-1,1,1,1,-1,-1,0,0,-1,1,1,0,1,1,1,1,-1,-1,1,-1,1,-1,1,-1
    1,0,-1,1,1,-1,1,1,-1,1,1,1,1,0,0,-1,1,1,0,-1,1,-1,1,-1,-1,0,-1,1,1,1,1
    -1,0,-1,1,-1,-1,1,1,-1,1,1,-1,1,0,0,-1,-1,-1,0,1,1,1,1,1,1,1,-1,1,-1,-1,1
    1,0,-1,1,1,-1,-1,-1,1,1,1,1,-1,-1,0,-1,-1,-1,0,1,1,1,1,1,-1,-1,-1,1,0,-1,-1
    1,0,1,1,1,-1,-1,-1,1,1,1,-1,-1,0,-1,-1,1,1,0,1,1,1,1,-1,-1,0,-1,1,0,1,-1
    1,0,-1,1,1,-1,1,1,-1,1,1,-1,1,0,1,-1,1,1,0,1,1,1,1,1,-1,1,1,1,0,1,1
    1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,0,1,-1,1,1,0,1,1,1,1,1,-1,0,-1,1,0,1,-1
    1,1,1,1,1,-1,0,1,1,1,1,1,-1,0,0,-1,-1,-1,0,1,1,1,1,-1,1,1,1,1,-1,-1,1
    1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,0,1,1,1,1,-1,-1,-1,-1,1,0,-1,-1
    -1,1,-1,1,-1,-1,0,0,1,1,1,-1,-1,-1,1,-1,1,1,0,-1,1,-1,1,1,-1,-1,-1,1,0,1,-1
    1,1,-1,1,1,-1,0,-1,1,1,1,1,-1,-1,-1,-1,1,1,0,1,1,1,1,-1,-1,0,-1,1,1,1,-1
    1,1,-1,1,1,1,-1,1,-1,1,1,-1,1,0,1,1,1,1,0,1,1,1,1,1,-1,1,-1,1,-1,1,1
    1,-1,-1,-1,1,-1,0,0,1,1,1,1,-1,-1,0,-1,1,1,0,1,1,1,1,1,-1,-1,-1,1,0,1,-1
    1,-1,-1,1,1,-1,1,1,-1,1,1,-1,1,0,-1,-1,-1,-1,0,1,1,1,1,1,-1,0,-1,1,1,-1,-1
    1,-1,1,1,1,-1,-1,0,1,1,-1,1,1,0,-1,-1,-1,-1,0,1,1,1,1,-1,1,1,-1,1,1,-1,-1
    1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,0,-1,-1,-1,-1,0,1,1,1,1,1,-1,-1,1,1,-1,-1,1
    1,1,1,1,1,-1,-1,1,-1,1,1,1,1,0,0,-1,-1,-1,0,-1,-1,-1,-1,1,-1,0,-1,1,0,-1,1
    1,0,-1,1,1,-1,0,1,-1,1,1,1,1,0,0,-1,-1,-1,0,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1
    1,0,1,1,1,-1,0,1,1,1,1,-1,-1,0,-1,-1,-1,-1,0,1,1,1,1,-1,1,-1,-1,1,0,-1,1
    1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,0,0,-1,1,1,0,1,1,1,1,1,1,0,-1,1,-1,1,1
    1,1,1,1,1,-1,1,0,-1,1,1,1,1,0,0,-1,1,1,0,1,1,1,1,1,1,1,-1,1,-1,1,1
    1,-1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,0,0,-1,1,1,0,1,1,1,1,1,1,-1,-1,1,0,1,1
    1,-1,1,1,1,-1,0,1,-1,1,1,1,1,1,0,-1,1,1,0,1,1,1,1,-1,1,1,-1,1,0,1,1
    1,-1,1,1,1,-1,0,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,0,1,1,1,1,1,1,0,-1,1,-1,-1,-1
    1,-1,-1,1,1,1,-1,1,1,1,1,1,-1,1,0,-1,-1,-1,0,1,1,1,1,1,-1,0,-1,1,0,-1,1
    1,-1,-1,1,-1,1,-1,1,-1,1,1,1,1,1,0,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,1
    1,-1,1,1,1,-1,-1,1,-1,1,1,1,1,1,0,-1,1,1,0,1,1,1,1,-1,1,1,1,1,0,1,1
    1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,0,1,-1,1,1,0,1,1,1,1,-1,-1,-1,-1,1,0,1,1
    1,-1,1,1,1,-1,-1,1,-1,-1,1,-1,1,0,-1,-1,-1,-1,0,-1,1,-1,-1,1,-1,1,1,1,0,-1,1
    1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,1,-1,-1,0,1,1,1,1,1,1,-1,-1,1,-1,-1,1
    1,0,1,1,1,-1,-1,1,-1,1,1,1,1,0,1,-1,-1,-1,0,1,1,1,1,1,1,1,-1,1,0,-1,1
    1,0,1,1,1,-1,0,0,1,1,1,1,-1,-1,-1,-1,-1,-1,0,1,1,1,1,1,-1,1,-1,1,1,-1,-1
    1,0,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,0,-1,1,1,0,1,1,1,1,-1,-1,-1,-1,1,1,1,-1
    1,0,1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,0,-1,1,1,0,-1,1,-1,-1,-1,-1,0,-1,1,0,1,-1
    1,0,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,0,-1,1,1,0,-1,1,-1,1,-1,-1,0,-1,1,0,1,-1
    1,1,1,1,1,1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,0,1,1,1,1,1,-1,1,-1,-1,1,-1,1
    1,-1,1,1,1,-1,0,-1,-1,1,1,-1,-1,1,0,-1,1,1,0,1,1,1,1,-1,-1,1,-1,1,0,1,1
    1,-1,1,1,1,1,1,1,-1,1,1,-1,1,1,0,-1,1,1,0,1,1,1,1,1,-1,1,-1,1,0,1,1
    -1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,0,-1,-1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1
    1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,0,-1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1
    1,-1,1,1,1,-1,0,0,1,-1,1,-1,-1,-1,0,-1,-1,-1,0,-1,1,-1,1,1,-1,-1,-1,1,0,-1,-1
    1,-1,1,-1,1,-1,0,-1,-1,1,1,1,1,-1,1,-1,-1,-1,0,1,1,1,1,-1,1,1,-1,1,1,-1,-1
    1,1,1,1,1,-1,0,1,-1,-1,1,1,1,0,-1,1,1,1,0,-1,1,-1,1,-1,1,1,-1,1,0,1,1
    -1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,0,0,1,-1,-1,0,1,1,1,1,1,1,1,-1,1,1,-1,1
    1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,0,-1,-1,1,1,0,1,1,1,1,-1,-1,1,-1,1,0,1,-1
    1,-1,1,1,1,-1,-1,1,-1,1,1,1,1,-1,-1,-1,1,1,0,1,1,1,1,-1,-1,0,-1,1,0,1,-1
    1,-1,1,1,1,-1,1,1,-1,1,1,1,1,0,1,-1,-1,-1,0,1,1,1,1,1,1,1,-1,-1,-1,-1,1
    1,-1,1,1,1,-1,1,1,-1,1,1,-1,1,0,-1,-1,1,1,0,1,1,1,1,1,1,0,-1,1,0,1,-1
    1,1,1,1,1,-1,1,1,-1,-1,1,1,1,0,0,1,1,1,0,-1,1,-1,-1,1,-1,0,-1,-1,0,1,1
    -1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,1,1,-1,-1,-1,0,1,1,1,1,1,-1,1,-1,-1,0,-1,1
    1,-1,1,1,1,-1,1,-1,1,1,1,1,-1,0,0,-1,1,1,0,1,1,1,1,-1,1,1,-1,1,0,1,-1
    1,-1,1,1,1,-1,0,-1,1,-1,-1,-1,-1,-1,0,-1,-1,-1,0,-1,1,-1,1,-1,-1,0,-1,1,0,-1,-1
    1,-1,1,1,1,-1,0,0,-1,-1,-1,1,-1,-1,0,-1,-1,-1,0,-1,1,-1,1,1,-1,0,-1,1,0,-1,-1
    -1,-1,-1,1,-1,1,1,1,1,1,1,-1,1,0,0,-1,1,1,0,1,1,1,1,1,1,1,-1,1,1,1,1
    1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,0,1,-1,-1,-1,0,-1,1,-1,1,1,1,1,1,1,0,-1,1
    1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,0,0,-1,-1,-1,0,-1,1,-1,1,-1,-1,0,-1,1,0,-1,-1
    

     

    Phishing Websites Features

    Rami M. Mohammad

    School of Computing and Engineering

    University of Huddersfield

    Huddersfield, UK.

    rami.mohammad@hud.ac.uk

     

    Fadi Thabtah

    E-Business Department

     Canadian University of Dubai

    Dubai, UAE.

    fadi@cud.ac.ae

    Lee McCluskey

    School of Computing and Engineering

    University of Huddersfield

    Huddersfield, UK.

    t.l.mccluskey@hud.ac.uk

    1.      Phishing Websites Features

    One of the challenges faced by our research was the unavailability of reliable training datasets. In fact, this challenge faces any researcher in the field. However, although plenty of articles about predicting phishing websites using data mining techniques have been disseminated these days, no reliable training dataset has been published publically, maybe because there is no agreement in literature on the definitive features that characterize phishing websites, hence it is difficult to shape a dataset that covers all possible features.

    In this article, we shed light on the important features that have proved to be sound and effective in predicting phishing websites. In addition, we proposed some new features, experimentally assign new rules to some well-known features and update some other features.

    1.1. Address Bar based Features

    1.1.1. Using the IP Address

    If an IP address is used as an alternative of the domain name in the URL, such as “http://125.98.3.123/fake.html”, users can be sure that someone is trying to steal their personal information. Sometimes, the IP address is even transformed into hexadecimal code as shown in the following link “http://0x58.0xCC.0xCA.0x62/2/paypal.ca/index.html”.

    Rule: IF

    1.1.2. Long URL to Hide the Suspicious Part

    Phishers can use long URL to hide the doubtful part in the address bar. For example:

    http://federmacedoadv.com.br/3f/aze/ab51e2e319e51502f416dbe46b773a5e/?cmd=_home&dispatch=11004d58f5b74f8dc1e7c2e8dd4105e811004d58f5b74f8dc1e7c2e8dd4105e8@phishing.website.html

    To ensure accuracy of our study, we calculated the length of URLs in the dataset and produced an average URL length. The results showed that if the length of the URL is greater than or equal 54 characters then the URL classified as phishing. By reviewing our dataset we were able to find 1220 URLs lengths equals to 54 or more which constitute 48.8% of the total dataset size.

     

    Rule: IF

     

    We have been able to update this feature rule by using a method based on frequency and thus improving upon its accuracy.

    1.1.3. Using URL Shortening Services “TinyURL”

    URL shortening is a method on the “World Wide Web” in which a URL may be made considerably smaller in length and still lead to the required webpage. This is accomplished by means of an “HTTP Redirect” on a domain name that is short, which links to the webpage that has a long URL. For example, the URL “http://portal.hud.ac.uk/” can be shortened to “bit.ly/19DXSk4”.

    Rule: IF

    1.1.4. URL’s having “@” Symbol

    Using “@” symbol in the URL leads the browser to ignore everything preceding the “@” symbol and the real address often follows the “@” symbol.

    Rule: IF

    1.1.5. Redirecting using “//”

    The existence of “//” within the URL path means that the user will be redirected to another website. An example of such URL’s is: “http://www.legitimate.com//http://www.phishing.com”. We examin the location where the “//” appears. We find that if the URL starts with “HTTP”, that means the “//” should appear in the sixth position. However, if the URL employs “HTTPS” then the “//” should appear in seventh position.

    Rule: IF

    1.1.6. Adding Prefix or Suffix Separated by (-) to the Domain

    The dash symbol is rarely used in legitimate URLs. Phishers tend to add prefixes or suffixes separated by (-) to the domain name so that users feel that they are dealing with a legitimate webpage. For example http://www.Confirme-paypal.com/.

    Rule: IF

    1.1.7. Sub Domain and Multi Sub Domains

    Let us assume we have the following link: http://www.hud.ac.uk/students/. A domain name might include the country-code top-level domains (ccTLD), which in our example is “uk”. The “ac” part is shorthand for “academic”, the combined “ac.uk” is called a second-level domain (SLD) and “hud” is the actual name of the domain. To produce a rule for extracting this feature, we firstly have to omit the (www.) from the URL which is in fact a sub domain in itself. Then, we have to remove the (ccTLD) if it exists. Finally, we count the remaining dots. If the number of dots is greater than one, then the URL is classified as “Suspicious” since it has one sub domain. However, if the dots are greater than two, it is classified as “Phishing” since it will have multiple sub domains. Otherwise, if the URL has no sub domains, we will assign “Legitimate” to the feature.

    Rule: IF

    1.1.8. HTTPS (Hyper Text Transfer Protocol with Secure Sockets Layer)

    The existence of HTTPS is very important in giving the impression of website legitimacy, but this is clearly not enough. The authors in (Mohammad, Thabtah and McCluskey 2012) (Mohammad, Thabtah and McCluskey 2013) suggest checking the certificate assigned with HTTPS including the extent of the trust certificate issuer, and the certificate age. Certificate Authorities that are consistently listed among the top trustworthy names include: “GeoTrust, GoDaddy, Network Solutions, Thawte, Comodo, Doster and VeriSign”. Furthermore, by testing out our datasets, we find that the minimum age of a reputable certificate is two years.

    Rule: IF

    1.1.9. Domain Registration Length

    Based on the fact that a phishing website lives for a short period of time, we believe that trustworthy domains are regularly paid for several years in advance. In our dataset, we find that the longest fraudulent domains have been used for one year only.

    Rule: IF

     

    1.1.10.            Favicon

    A favicon is a graphic image (icon) associated with a specific webpage. Many existing user agents such as graphical browsers and newsreaders show favicon as a visual reminder of the website identity in the address bar. If the favicon is loaded from a domain other than that shown in the address bar, then the webpage is likely to be considered a Phishing attempt.

    Rule: IF

    1.1.11.            Using Non-Standard Port

    This feature is useful in validating if a particular service (e.g. HTTP) is up or down on a specific server. In the aim of controlling intrusions, it is much better to merely open ports that you need. Several firewalls, Proxy and Network Address Translation (NAT) servers will, by default, block all or most of the ports and only open the ones selected. If all ports are open, phishers can run almost any service they want and as a result, user information is threatened. The most important ports and their preferred status are shown in Table 2.

    Rule: IF

    Table 1 Common ports to be checked

    PORT

    Service

    Meaning

    Preferred Status

    21

    FTP

    Transfer files from one host to another

    Close

    22

    SSH

    Secure File Transfer Protocol

    Close

    23

    Telnet

    provide a bidirectional interactive text-oriented communication

    Close

    80

    HTTP

    Hyper test transfer protocol

    Open

    443

    HTTPS

    Hypertext transfer protocol secured

    Open

    445

    SMB

    Providing shared access to files, printers, serial ports

    Close

    1433

    MSSQL

    Store and retrieve data as requested by other software applications

    Close

    1521

    ORACLE

    Access oracle database from web.

    Close

    3306

    MySQL

    Access MySQL database from web.

    Close

    3389

    Remote Desktop

    allow remote access and remote collaboration

    Close

     

    1.1.12.            The Existence of “HTTPS” Token in the Domain Part of the URL

    The phishers may add the “HTTPS” token to the domain part of a URL in order to trick users. For example,
    http://https-www-paypal-it-webapps-mpp-home.soft-hair.com/.

    Rule: IF

    1.2. Abnormal Based Features

    1.2.1. Request URL

    Request URL examines whether the external objects contained within a webpage such as images, videos and sounds are loaded from another domain. In legitimate webpages, the webpage address and most of objects embedded within the webpage are sharing the same domain.

    Rule: IF

     

    1.2.2. URL of Anchor

    An anchor is an element defined by the <a> tag. This feature is treated exactly as “Request URL”. However, for this feature we examine:

    1. If the <a> tags and the website have different domain names. This is similar to request URL feature.
    2. If the anchor does not link to any webpage, e.g.:
      1. <a href=“#”>
      2. <a href=“#content”>
      3. <a href=“#skip”>
      4. <a href=“JavaScript ::void(0)”>

    Rule:  IF

     

    1.2.3. Links in <Meta>, <Script> and <Link> tags

    Given that our investigation covers all angles likely to be used in the webpage source code, we find that it is common for legitimate websites to use <Meta> tags to offer metadata about the HTML document; <Script> tags to create a client side script; and <Link> tags to retrieve other web resources. It is expected that these tags are linked to the same domain of the webpage.

    Rule: IF

     

    1.2.4. Server Form Handler (SFH)

    SFHs that contain an empty string or “about:blank” are considered doubtful because an action should be taken upon the submitted information. In addition, if the domain name in SFHs is different from the domain name of the webpage, this reveals that the webpage is suspicious because the submitted information is rarely handled by external domains.

    Rule: IF

    1.2.5. Submitting Information to Email

    Web form allows a user to submit his personal information that is directed to a server for processing. A phisher might redirect the user’s information to his personal email. To that end, a server-side script language might be used such as “mail()” function in PHP. One more client-side function that might be used for this purpose is the “mailto:” function.

    Rule: IF

    1.2.6. Abnormal URL

    This feature can be extracted from WHOIS database. For a legitimate website, identity is typically part of its URL.

    Rule: IF

    1.3. HTML and JavaScript based Features

    1.3.1. Website Forwarding

    The fine line that distinguishes phishing websites from legitimate ones is how many times a website has been redirected. In our dataset, we find that legitimate websites have been redirected one time max. On the other hand, phishing websites containing this feature have been redirected at least 4 times.

    Rule: IF

    1.3.2. Status Bar Customization

    Phishers may use JavaScript to show a fake URL in the status bar to users. To extract this feature, we must dig-out the webpage source code, particularly the “onMouseOver” event, and check if it makes any changes on the status bar.

    Rule: IF

    1.3.3. Disabling Right Click

    Phishers use JavaScript to disable the right-click function, so that users cannot view and save the webpage source code. This feature is treated exactly as “Using onMouseOver to hide the Link”. Nonetheless, for this feature, we will search for event “event.button==2” in the webpage source code and check if the right click is disabled.

    Rule: IF

    1.3.4. Using Pop-up Window

    It is unusual to find a legitimate website asking users to submit their personal information through a pop-up window. On the other hand, this feature has been used in some legitimate websites and its main goal is to warn users about fraudulent activities or broadcast a welcome announcement, though no personal information was asked to be filled in through these pop-up windows.

    Rule: IF

    1.3.5. IFrame Redirection

    IFrame is an HTML tag used to display an additional webpage into one that is currently shown. Phishers can make use of the “iframe” tag and make it invisible i.e. without frame borders. In this regard, phishers make use of the “frameBorder” attribute which causes the browser to render a visual delineation.

    Rule: IF

    1.4. Domain based Features

    1.4.1. Age of Domain

    This feature can be extracted from WHOIS database (Whois 2005). Most phishing websites live for a short period of time. By reviewing our dataset, we find that the minimum age of the legitimate domain is 6 months.

    Rule: IF

    1.4.2. DNS Record

    For phishing websites, either the claimed identity is not recognized by the WHOIS database (Whois 2005) or no records founded for the hostname (Pan and Ding 2006). If the DNS record is empty or not found then the website is classified as “Phishing”, otherwise it is classified as “Legitimate”.

    Rule: IF

    1.4.3. Website Traffic

    This feature measures the popularity of the website by determining the number of visitors and the number of pages they visit. However, since phishing websites live for a short period of time, they may not be recognized by the Alexa database (Alexa the Web Information Company., 1996). By reviewing our dataset, we find that in worst scenarios, legitimate websites ranked among the top 100,000. Furthermore, if the domain has no traffic or is not recognized by the Alexa database, it is classified as “Phishing”. Otherwise, it is classified as “Suspicious”.

    Rule: IF

    1.4.4. PageRank

    PageRank is a value ranging from “0” to “1”. PageRank aims to measure how important a webpage is on the Internet. The greater the PageRank value the more important the webpage. In our datasets, we find that about 95% of phishing webpages have no PageRank. Moreover, we find that the remaining 5% of phishing webpages may reach a PageRank value up to “0.2”.

    Rule: IF

    1.4.5. Google Index

    This feature examines whether a website is in Google’s index or not. When a site is indexed by Google, it is displayed on search results (Webmaster resources, 2014). Usually, phishing webpages are merely accessible for a short period and as a result, many phishing webpages may not be found on the Google index.

    Rule: IF

    1.4.6. Number of Links Pointing to Page 

    The number of links pointing to the webpage indicates its legitimacy level, even if some links are of the same domain (Dean, 2014). In our datasets and due to its short life span, we find that 98% of phishing dataset items have no links pointing to them. On the other hand, legitimate websites have at least 2 external links pointing to them.

    Rule: IF

    1.4.7. Statistical-Reports Based Feature

    Several parties such as PhishTank (PhishTank Stats, 2010-2012), and StopBadware (StopBadware, 2010-2012) formulate numerous statistical reports on phishing websites at every given period of time; some are monthly and others are quarterly. In our research, we used 2 forms of the top ten statistics from PhishTank: “Top 10 Domains” and “Top 10 IPs” according to statistical-reports published in the last three years, starting in January2010 to November 2012. Whereas for “StopBadware”, we used “Top 50” IP addresses.

    Rule: IF

  • 相关阅读:
    Linq之旅:Linq入门详解(Linq to Objects)【转】
    Shadow Map 原理和改进 【转】
    OSG 中文解决方案 【转】
    shadow mapping实现动态shadow实现记录 【转】
    RenderMonkey 练习 第六天 【OpenGL Water 水效】
    glsl水包含倒影的实现(rtt) 【转】
    Docker镜像仓库Harbor之搭建及配置
    docker登录没有配置https的harbor镜像仓库
    Git 清除远端已删除的分支
    单节点k8s的一个小例子 webapp+mysql
  • 原文地址:https://www.cnblogs.com/bonelee/p/14897080.html
Copyright © 2011-2022 走看看