zoukankan      html  css  js  c++  java
  • tflearn Training Step每次 We will run it for 10 epochs (the network will see all data 10 times) with a batch size of 16. n_epoch=10, batch_size=16

    Training

    TFLearn provides a model wrapper 'DNN' that can automatically performs a neural network classifier tasks, such as training, prediction, save/restore, etc... We will run it for 10 epochs (the network will see all data 10 times) with a batch size of 16.

    # Define model
    model = tflearn.DNN(net)
    # Start training (apply gradient descent algorithm)
    model.fit(data, labels, n_epoch=10, batch_size=16, show_metric=True)
    

    Output:

    ---------------------------------
    Run id: MG9PV8
    Log directory: /tmp/tflearn_logs/
    ---------------------------------
    Training samples: 1309
    Validation samples: 0
    --
    Training Step: 82  | total loss: 0.64003
    | Adam | epoch: 001 | loss: 0.64003 - acc: 0.6620 -- iter: 1309/1309
    --
    Training Step: 164  | total loss: 0.61915
    | Adam | epoch: 002 | loss: 0.61915 - acc: 0.6614 -- iter: 1309/1309
    --
    Training Step: 246  | total loss: 0.56067
    | Adam | epoch: 003 | loss: 0.56067 - acc: 0.7171 -- iter: 1309/1309
    --
    Training Step: 328  | total loss: 0.51807
    | Adam | epoch: 004 | loss: 0.51807 - acc: 0.7799 -- iter: 1309/1309
    --
    Training Step: 410  | total loss: 0.47475
    | Adam | epoch: 005 | loss: 0.47475 - acc: 0.7962 -- iter: 1309/1309
    --
    Training Step: 492  | total loss: 0.51677
    | Adam | epoch: 006 | loss: 0.51677 - acc: 0.7701 -- iter: 1309/1309
    --
    Training Step: 574  | total loss: 0.48988
    | Adam | epoch: 007 | loss: 0.48988 - acc: 0.7891 -- iter: 1309/1309
    --
    Training Step: 656  | total loss: 0.55073
    | Adam | epoch: 008 | loss: 0.55073 - acc: 0.7427 -- iter: 1309/1309
    --
    Training Step: 738  | total loss: 0.50242
    | Adam | epoch: 009 | loss: 0.50242 - acc: 0.7854 -- iter: 1309/1309
    --
    Training Step: 820  | total loss: 0.41557
    | Adam | epoch: 010 | loss: 0.41557 - acc: 0.8110 -- iter: 1309/1309
    --
    

    Our model finish to train with an overall accuracy around 81%, which means that it can predict the correct outcome (survived or not) for 81% of the total passengers.

  • 相关阅读:
    某公司面试的SQL题目
    列存储索引
    JList动态添加元素
    Java中堆、栈、常量池等概念解析
    JButton大小设置问题?
    JAVA中定时器的使用
    线性表和链表的区别
    JTable表头显示问题以及如何让某行选中
    JPanel如何设置背景图片
    关于Scanner调用nextInt()异常try后不能二次输入问题
  • 原文地址:https://www.cnblogs.com/bonelee/p/8124602.html
Copyright © 2011-2022 走看看