zoukankan      html  css  js  c++  java
  • 神经网络的结构汇总——tflearn

    一些先进的网络结构:

    # https://github.com/tflearn/tflearn/blob/master/examples/images/highway_dnn.py
    # -*- coding: utf-8 -*-
    
    """ Deep Neural Network for MNIST dataset classification task using 
    a highway network
    References:
    Links:
        [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
        [https://arxiv.org/abs/1505.00387](https://arxiv.org/abs/1505.00387)
    """
    from __future__ import division, print_function, absolute_import
    
    import tflearn
    
    # Data loading and preprocessing
    import tflearn.datasets.mnist as mnist
    X, Y, testX, testY = mnist.load_data(one_hot=True)
    
    # Building deep neural network
    input_layer = tflearn.input_data(shape=[None, 784])
    dense1 = tflearn.fully_connected(input_layer, 64, activation='elu',
                                     regularizer='L2', weight_decay=0.001)
                     
                     
    #install a deep network of highway layers
    highway = dense1                              
    for i in range(10):
        highway = tflearn.highway(highway, 64, activation='elu',
                                  regularizer='L2', weight_decay=0.001, transform_dropout=0.8)
                                  
                                  
    softmax = tflearn.fully_connected(highway, 10, activation='softmax')
    
    # Regression using SGD with learning rate decay and Top-3 accuracy
    sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000)
    top_k = tflearn.metrics.Top_k(3)
    net = tflearn.regression(softmax, optimizer=sgd, metric=top_k,
                             loss='categorical_crossentropy')
    
    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0)
    model.fit(X, Y, n_epoch=20, validation_set=(testX, testY),
    show_metric=True, run_id="highway_dense_model")
    
    # https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_highway_mnist.py
    from __future__ import division, print_function, absolute_import
    
    import tflearn
    from tflearn.layers.core import input_data, dropout, fully_connected
    from tflearn.layers.conv import highway_conv_2d, max_pool_2d
    from tflearn.layers.normalization import local_response_normalization, batch_normalization
    from tflearn.layers.estimator import regression
    
    # Data loading and preprocessing
    import tflearn.datasets.mnist as mnist
    X, Y, testX, testY = mnist.load_data(one_hot=True)
    X = X.reshape([-1, 28, 28, 1])
    testX = testX.reshape([-1, 28, 28, 1])
    
    # Building convolutional network
    network = input_data(shape=[None, 28, 28, 1], name='input')
    #highway convolutions with pooling and dropout
    for i in range(3):
        for j in [3, 2, 1]: 
            network = highway_conv_2d(network, 16, j, activation='elu')
        network = max_pool_2d(network, 2)
        network = batch_normalization(network)
        
    network = fully_connected(network, 128, activation='elu')
    network = fully_connected(network, 256, activation='elu')
    network = fully_connected(network, 10, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.01,
                         loss='categorical_crossentropy', name='target')
    
    # Training
    model = tflearn.DNN(network, tensorboard_verbose=0)
    model.fit(X, Y, n_epoch=20, validation_set=(testX, testY),
    show_metric=True, run_id='convnet_highway_mnist')
    
    # https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py
    from __future__ import division, print_function, absolute_import
    
    import tflearn
    import tflearn.data_utils as du
    
    # Data loading and preprocessing
    import tflearn.datasets.mnist as mnist
    X, Y, testX, testY = mnist.load_data(one_hot=True)
    X = X.reshape([-1, 28, 28, 1])
    testX = testX.reshape([-1, 28, 28, 1])
    X, mean = du.featurewise_zero_center(X)
    testX = du.featurewise_zero_center(testX, mean)
    
    # Building Residual Network
    net = tflearn.input_data(shape=[None, 28, 28, 1])
    net = tflearn.conv_2d(net, 64, 3, activation='relu', bias=False)
    # Residual blocks
    net = tflearn.residual_bottleneck(net, 3, 16, 64)
    net = tflearn.residual_bottleneck(net, 1, 32, 128, downsample=True)
    net = tflearn.residual_bottleneck(net, 2, 32, 128)
    net = tflearn.residual_bottleneck(net, 1, 64, 256, downsample=True)
    net = tflearn.residual_bottleneck(net, 2, 64, 256)
    net = tflearn.batch_normalization(net)
    net = tflearn.activation(net, 'relu')
    net = tflearn.global_avg_pool(net)
    # Regression
    net = tflearn.fully_connected(net, 10, activation='softmax')
    net = tflearn.regression(net, optimizer='momentum',
                             loss='categorical_crossentropy',
                             learning_rate=0.1)
    # Training
    model = tflearn.DNN(net, checkpoint_path='model_resnet_mnist',
                        max_checkpoints=10, tensorboard_verbose=0)
    model.fit(X, Y, n_epoch=100, validation_set=(testX, testY),
    show_metric=True, batch_size=256, run_id='resnet_mnist')
    
    
    # https://github.com/tflearn/tflearn/blob/master/examples/images/resnext_cifar10.py
    from __future__ import division, print_function, absolute_import
    
    import tflearn
    
    # Residual blocks
    # 32 layers: n=5, 56 layers: n=9, 110 layers: n=18
    n = 5
    
    # Data loading
    from tflearn.datasets import cifar10
    (X, Y), (testX, testY) = cifar10.load_data()
    Y = tflearn.data_utils.to_categorical(Y)
    testY = tflearn.data_utils.to_categorical(testY)
    
    # Real-time data preprocessing
    img_prep = tflearn.ImagePreprocessing()
    img_prep.add_featurewise_zero_center(per_channel=True)
    
    # Real-time data augmentation
    img_aug = tflearn.ImageAugmentation()
    img_aug.add_random_flip_leftright()
    img_aug.add_random_crop([32, 32], padding=4)
    
    # Building Residual Network
    net = tflearn.input_data(shape=[None, 32, 32, 3],
                             data_preprocessing=img_prep,
                             data_augmentation=img_aug)
    net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
    net = tflearn.resnext_block(net, n, 16, 32)
    net = tflearn.resnext_block(net, 1, 32, 32, downsample=True)
    net = tflearn.resnext_block(net, n-1, 32, 32)
    net = tflearn.resnext_block(net, 1, 64, 32, downsample=True)
    net = tflearn.resnext_block(net, n-1, 64, 32)
    net = tflearn.batch_normalization(net)
    net = tflearn.activation(net, 'relu')
    net = tflearn.global_avg_pool(net)
    # Regression
    net = tflearn.fully_connected(net, 10, activation='softmax')
    opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
    net = tflearn.regression(net, optimizer=opt,
                             loss='categorical_crossentropy')
    # Training
    model = tflearn.DNN(net, checkpoint_path='model_resnext_cifar10',
                        max_checkpoints=10, tensorboard_verbose=0,
                        clip_gradients=0.)
    
    model.fit(X, Y, n_epoch=200, validation_set=(testX, testY),
              snapshot_epoch=False, snapshot_step=500,
              show_metric=True, batch_size=128, shuffle=True,
    run_id='resnext_cifar10')
    

    一维的,后续优化网络结构使用:

    # 关于一维CNN的网络,例子较少
    # https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py
    # Building convolutional network
    network = input_data(shape=[None, 100], name='input')
    network = tflearn.embedding(network, input_dim=10000, output_dim=128)
    branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
    branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
    branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
    network = merge([branch1, branch2, branch3], mode='concat', axis=1)
    network = tf.expand_dims(network, 2)
    network = global_max_pool(network)
    network = dropout(network, 0.5)
    network = fully_connected(network, 2, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.001,
                         loss='categorical_crossentropy', name='target')
    # Training
    model = tflearn.DNN(network, tensorboard_verbose=0)
    
    
    # http://codegists.com/snippet/python/specificpy_lastzactionhero_python
    # Specify shape of the data, image prep
    network = input_data(shape=[None, 52, 64],
                         data_preprocessing=img_prep,
                         data_augmentation=img_aug)
     
    # conv_2d incoming, nb_filter, filter_size
    # incoming: Tensor. Incoming 4-D Tensor.
    # nb_filter: int. The number of convolutional filters. # WHAT IS THIS?
    # filter_size: 'intor list ofints`. Size of filters.   # WHAT IS THIS?
    network = conv_1d(network, 512, 3, activation='relu')
     
    # (incoming, kernel_size)
    # incoming: Tensor. Incoming 4-D Layer.
    # kernel_size: 'intor list ofints`. Pooling kernel size.
    network = max_pool_1d(network, 2)
     
    network = conv_1d(network, 64, 3, activation='relu')
    network = conv_1d(network, 64, 3, activation='relu')
    network = max_pool_1d(network, 2)
     
    network = fully_connected(network, 512, activation='relu')
     
    network = dropout(network, 0.5)
     
    network = fully_connected(network, 4, activation='softmax')
     
    network = regression(network, optimizer='adam',
                         loss='categorical_crossentropy',
                         learning_rate=0.0003)
    
    model = tflearn.DNN(network, tensorboard_verbose=0)
    
    
    # https://github.com/gonzalolc/CharacterLevel-CNN-TFLearn/blob/master/train.py
    # Building convolutional network
    network = input_data(shape=[None, 1024], name='input')
    network = tflearn.embedding(network, input_dim=71, output_dim=256)
    network = conv_1d(network, 256, 7, padding='valid', scope='conv1', activation='relu')
    network = max_pool_1d(network, 3, strides=3, name='Maxpool1D_1')
    network = conv_1d(network, 256, 7, padding='valid', scope='conv2', activation='relu')
    network = max_pool_1d(network, 3, strides=3, name='Maxpool1D_2')
    network = conv_1d(network, 256, 3, padding='valid', scope='conv3', activation='relu')
    network = conv_1d(network, 256, 3, padding='valid', scope='conv4', activation='relu')
    network = conv_1d(network, 256, 3, padding='valid', scope='conv5', activation='relu')
    network = conv_1d(network, 256, 3, padding='valid', scope='conv6', activation='relu')
    network = max_pool_1d(network, 3, strides=3, name='Maxpool1D_Last')
    network = tflearn.fully_connected(network, 1024, name='Fullyconected_0')
    network = dropout(network, 0.5)
    network = tflearn.fully_connected(network, 1024, name='Fullyconected_1')
    network = dropout(network, 0.5)
    network = fully_connected(network, 14, activation='softmax', name='FullyConected_Last')
    network = regression(network, optimizer='adam', loss='categorical_crossentropy', name='target')
    
    
    # Training
    model = tflearn.DNN(network,tensorboard_dir='runs', checkpoint_path='checkpoints/Checkpoints', best_checkpoint_path='bestcheckpoints/BestCheckpoint', best_val_accuracy=0.94, tensorboard_verbose=2)
    
    
    
    # https://github.com/jrzaurin/Text-Classification-with-Tensorflow/blob/master/pretrained_word_embedding_TF_tflearn.py
        net = input_data(shape=[None,MAX_SEQUENCE_LENGTH], name='input')
        net = embedding(net, input_dim=MAX_NB_WORDS, output_dim=EMBEDDING_DIM, trainable=False, name="EmbeddingLayer")
        net = conv_1d(net, 128, 5, 1, activation='relu', padding="valid")
        # one could add regularization as:
        # net = conv_1d(net, 128, 5, 1, activation='relu', regularizer="L2", padding="valid")
        net = max_pool_1d(net, 5, padding="valid")
        net = batch_normalization(net)
        net = conv_1d(net, 128, 5, activation='relu', padding="valid")
        net = max_pool_1d(net, 5, padding="valid")
        net = batch_normalization(net)
        net = conv_1d(net, 128, 5, activation='relu', padding="valid")
        net = max_pool_1d(net, 35)
        net = batch_normalization(net)
        net = fully_connected(net, 128, activation='relu')
        net = dropout(net, 0.5)
        net = fully_connected(net, y_train.shape[1], activation='softmax')
        net = regression(net, optimizer='adam', learning_rate=0.01,
                             loss='categorical_crossentropy', name='target')
        model = tflearn.DNN(net, tensorboard_verbose=0)
    
        

    二维的tflearn官方的例子就非常多,到时候一维的可以借鉴他们的结构设计:

    #https://github.com/tflearn/tflearn/blob/master/examples/basics/logical.py
        # Building a network with 2 optimizers
        g = tflearn.input_data(shape=[None, 2])
        # Nand operator definition
        g_nand = tflearn.fully_connected(g, 32, activation='linear')
        g_nand = tflearn.fully_connected(g_nand, 32, activation='linear')
        g_nand = tflearn.fully_connected(g_nand, 1, activation='sigmoid')
        g_nand = tflearn.regression(g_nand, optimizer='sgd',
                                    learning_rate=2.,
                                    loss='binary_crossentropy')
        # Or operator definition
        g_or = tflearn.fully_connected(g, 32, activation='linear')
        g_or = tflearn.fully_connected(g_or, 32, activation='linear')
        g_or = tflearn.fully_connected(g_or, 1, activation='sigmoid')
        g_or = tflearn.regression(g_or, optimizer='sgd',
                                  learning_rate=2.,
                                  loss='binary_crossentropy')
        # XOR merging Nand and Or operators
        g_xor = tflearn.merge([g_nand, g_or], mode='elemwise_mul')
    
        # Training
    m = tflearn.DNN(g_xor)
    
    
    #https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py
    # Building deep neural network
    input_layer = tflearn.input_data(shape=[None, 784])
    dense1 = tflearn.fully_connected(input_layer, 64, activation='tanh',
                                     regularizer='L2', weight_decay=0.001)
    dropout1 = tflearn.dropout(dense1, 0.8)
    dense2 = tflearn.fully_connected(dropout1, 64, activation='tanh',
                                     regularizer='L2', weight_decay=0.001)
    dropout2 = tflearn.dropout(dense2, 0.8)
    softmax = tflearn.fully_connected(dropout2, 10, activation='softmax')
    
    # Regression using SGD with learning rate decay and Top-3 accuracy
    sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000)
    top_k = tflearn.metrics.Top_k(3)
    net = tflearn.regression(softmax, optimizer=sgd, metric=top_k,
                             loss='categorical_crossentropy')
    
    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0)
    
    
    # https://github.com/tflearn/tflearn/blob/master/examples/basics/finetuning.py
    
    # Redefinition of convnet_cifar10 network
    network = input_data(shape=[None, 32, 32, 3])
    network = conv_2d(network, 32, 3, activation='relu')
    network = max_pool_2d(network, 2)
    network = dropout(network, 0.75)
    network = conv_2d(network, 64, 3, activation='relu')
    network = conv_2d(network, 64, 3, activation='relu')
    network = max_pool_2d(network, 2)
    network = dropout(network, 0.5)
    network = fully_connected(network, 512, activation='relu')
    network = dropout(network, 0.5)
    # Finetuning Softmax layer (Setting restore=False to not restore its weights)
    softmax = fully_connected(network, num_classes, activation='softmax', restore=False)
    regression = regression(softmax, optimizer='adam',
                            loss='categorical_crossentropy',
                            learning_rate=0.001)
    
    model = tflearn.DNN(regression, checkpoint_path='model_finetuning',
                        max_checkpoints=3, tensorboard_verbose=0)
    # Load pre-existing model, restoring all weights, except softmax layer ones
    
    # https://github.com/tflearn/tflearn/blob/master/examples/nlp/dynamic_lstm.py
    # Network building
    net = tflearn.input_data([None, 100])
    # Masking is not required for embedding, sequence length is computed prior to
    # the embedding op and assigned as 'seq_length' attribute to the returned Tensor.
    net = tflearn.embedding(net, input_dim=10000, output_dim=128)
    net = tflearn.lstm(net, 128, dropout=0.8, dynamic=True)
    net = tflearn.fully_connected(net, 2, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy')
    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0)
    
    # https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py
    network = input_data(shape=[None, 227, 227, 3])
    conv1_7_7 = conv_2d(network, 64, 7, strides=2, activation='relu', name='conv1_7_7_s2')
    pool1_3_3 = max_pool_2d(conv1_7_7, 3, strides=2)
    pool1_3_3 = local_response_normalization(pool1_3_3)
    conv2_3_3_reduce = conv_2d(pool1_3_3, 64, 1, activation='relu', name='conv2_3_3_reduce')
    conv2_3_3 = conv_2d(conv2_3_3_reduce, 192, 3, activation='relu', name='conv2_3_3')
    conv2_3_3 = local_response_normalization(conv2_3_3)
    pool2_3_3 = max_pool_2d(conv2_3_3, kernel_size=3, strides=2, name='pool2_3_3_s2')
    
    # 3a
    inception_3a_1_1 = conv_2d(pool2_3_3, 64, 1, activation='relu', name='inception_3a_1_1')
    inception_3a_3_3_reduce = conv_2d(pool2_3_3, 96, 1, activation='relu', name='inception_3a_3_3_reduce')
    inception_3a_3_3 = conv_2d(inception_3a_3_3_reduce, 128, filter_size=3,  activation='relu', name='inception_3a_3_3')
    inception_3a_5_5_reduce = conv_2d(pool2_3_3, 16, filter_size=1, activation='relu', name='inception_3a_5_5_reduce')
    inception_3a_5_5 = conv_2d(inception_3a_5_5_reduce, 32, filter_size=5, activation='relu', name='inception_3a_5_5')
    inception_3a_pool = max_pool_2d(pool2_3_3, kernel_size=3, strides=1, name='inception_3a_pool')
    inception_3a_pool_1_1 = conv_2d(inception_3a_pool, 32, filter_size=1, activation='relu', name='inception_3a_pool_1_1')
    inception_3a_output = merge([inception_3a_1_1, inception_3a_3_3, inception_3a_5_5, inception_3a_pool_1_1], mode='concat', axis=3)
    
    # 3b
    inception_3b_1_1 = conv_2d(inception_3a_output, 128, filter_size=1, activation='relu', name='inception_3b_1_1')
    inception_3b_3_3_reduce = conv_2d(inception_3a_output, 128, filter_size=1, activation='relu', name='inception_3b_3_3_reduce')
    inception_3b_3_3 = conv_2d(inception_3b_3_3_reduce, 192, filter_size=3, activation='relu', name='inception_3b_3_3')
    inception_3b_5_5_reduce = conv_2d(inception_3a_output, 32, filter_size=1, activation='relu', name='inception_3b_5_5_reduce')
    inception_3b_5_5 = conv_2d(inception_3b_5_5_reduce, 96, filter_size=5,  name='inception_3b_5_5')
    inception_3b_pool = max_pool_2d(inception_3a_output, kernel_size=3, strides=1,  name='inception_3b_pool')
    inception_3b_pool_1_1 = conv_2d(inception_3b_pool, 64, filter_size=1, activation='relu', name='inception_3b_pool_1_1')
    inception_3b_output = merge([inception_3b_1_1, inception_3b_3_3, inception_3b_5_5, inception_3b_pool_1_1], mode='concat', axis=3, name='inception_3b_output')
    pool3_3_3 = max_pool_2d(inception_3b_output, kernel_size=3, strides=2, name='pool3_3_3')
    
    # 4a
    inception_4a_1_1 = conv_2d(pool3_3_3, 192, filter_size=1, activation='relu', name='inception_4a_1_1')
    inception_4a_3_3_reduce = conv_2d(pool3_3_3, 96, filter_size=1, activation='relu', name='inception_4a_3_3_reduce')
    inception_4a_3_3 = conv_2d(inception_4a_3_3_reduce, 208, filter_size=3,  activation='relu', name='inception_4a_3_3')
    inception_4a_5_5_reduce = conv_2d(pool3_3_3, 16, filter_size=1, activation='relu', name='inception_4a_5_5_reduce')
    inception_4a_5_5 = conv_2d(inception_4a_5_5_reduce, 48, filter_size=5,  activation='relu', name='inception_4a_5_5')
    inception_4a_pool = max_pool_2d(pool3_3_3, kernel_size=3, strides=1,  name='inception_4a_pool')
    inception_4a_pool_1_1 = conv_2d(inception_4a_pool, 64, filter_size=1, activation='relu', name='inception_4a_pool_1_1')
    inception_4a_output = merge([inception_4a_1_1, inception_4a_3_3, inception_4a_5_5, inception_4a_pool_1_1], mode='concat', axis=3, name='inception_4a_output')
    
    # 4b
    inception_4b_1_1 = conv_2d(inception_4a_output, 160, filter_size=1, activation='relu', name='inception_4a_1_1')
    inception_4b_3_3_reduce = conv_2d(inception_4a_output, 112, filter_size=1, activation='relu', name='inception_4b_3_3_reduce')
    inception_4b_3_3 = conv_2d(inception_4b_3_3_reduce, 224, filter_size=3, activation='relu', name='inception_4b_3_3')
    inception_4b_5_5_reduce = conv_2d(inception_4a_output, 24, filter_size=1, activation='relu', name='inception_4b_5_5_reduce')
    inception_4b_5_5 = conv_2d(inception_4b_5_5_reduce, 64, filter_size=5,  activation='relu', name='inception_4b_5_5')
    inception_4b_pool = max_pool_2d(inception_4a_output, kernel_size=3, strides=1,  name='inception_4b_pool')
    inception_4b_pool_1_1 = conv_2d(inception_4b_pool, 64, filter_size=1, activation='relu', name='inception_4b_pool_1_1')
    inception_4b_output = merge([inception_4b_1_1, inception_4b_3_3, inception_4b_5_5, inception_4b_pool_1_1], mode='concat', axis=3, name='inception_4b_output')
    
    # 4c
    inception_4c_1_1 = conv_2d(inception_4b_output, 128, filter_size=1, activation='relu', name='inception_4c_1_1')
    inception_4c_3_3_reduce = conv_2d(inception_4b_output, 128, filter_size=1, activation='relu', name='inception_4c_3_3_reduce')
    inception_4c_3_3 = conv_2d(inception_4c_3_3_reduce, 256,  filter_size=3, activation='relu', name='inception_4c_3_3')
    inception_4c_5_5_reduce = conv_2d(inception_4b_output, 24, filter_size=1, activation='relu', name='inception_4c_5_5_reduce')
    inception_4c_5_5 = conv_2d(inception_4c_5_5_reduce, 64,  filter_size=5, activation='relu', name='inception_4c_5_5')
    inception_4c_pool = max_pool_2d(inception_4b_output, kernel_size=3, strides=1)
    inception_4c_pool_1_1 = conv_2d(inception_4c_pool, 64, filter_size=1, activation='relu', name='inception_4c_pool_1_1')
    inception_4c_output = merge([inception_4c_1_1, inception_4c_3_3, inception_4c_5_5, inception_4c_pool_1_1], mode='concat', axis=3, name='inception_4c_output')
    
    # 4d
    inception_4d_1_1 = conv_2d(inception_4c_output, 112, filter_size=1, activation='relu', name='inception_4d_1_1')
    inception_4d_3_3_reduce = conv_2d(inception_4c_output, 144, filter_size=1, activation='relu', name='inception_4d_3_3_reduce')
    inception_4d_3_3 = conv_2d(inception_4d_3_3_reduce, 288, filter_size=3, activation='relu', name='inception_4d_3_3')
    inception_4d_5_5_reduce = conv_2d(inception_4c_output, 32, filter_size=1, activation='relu', name='inception_4d_5_5_reduce')
    inception_4d_5_5 = conv_2d(inception_4d_5_5_reduce, 64, filter_size=5,  activation='relu', name='inception_4d_5_5')
    inception_4d_pool = max_pool_2d(inception_4c_output, kernel_size=3, strides=1,  name='inception_4d_pool')
    inception_4d_pool_1_1 = conv_2d(inception_4d_pool, 64, filter_size=1, activation='relu', name='inception_4d_pool_1_1')
    inception_4d_output = merge([inception_4d_1_1, inception_4d_3_3, inception_4d_5_5, inception_4d_pool_1_1], mode='concat', axis=3, name='inception_4d_output')
    
    # 4e
    inception_4e_1_1 = conv_2d(inception_4d_output, 256, filter_size=1, activation='relu', name='inception_4e_1_1')
    inception_4e_3_3_reduce = conv_2d(inception_4d_output, 160, filter_size=1, activation='relu', name='inception_4e_3_3_reduce')
    inception_4e_3_3 = conv_2d(inception_4e_3_3_reduce, 320, filter_size=3, activation='relu', name='inception_4e_3_3')
    inception_4e_5_5_reduce = conv_2d(inception_4d_output, 32, filter_size=1, activation='relu', name='inception_4e_5_5_reduce')
    inception_4e_5_5 = conv_2d(inception_4e_5_5_reduce, 128,  filter_size=5, activation='relu', name='inception_4e_5_5')
    inception_4e_pool = max_pool_2d(inception_4d_output, kernel_size=3, strides=1,  name='inception_4e_pool')
    inception_4e_pool_1_1 = conv_2d(inception_4e_pool, 128, filter_size=1, activation='relu', name='inception_4e_pool_1_1')
    inception_4e_output = merge([inception_4e_1_1, inception_4e_3_3, inception_4e_5_5, inception_4e_pool_1_1], axis=3, mode='concat')
    pool4_3_3 = max_pool_2d(inception_4e_output, kernel_size=3, strides=2, name='pool_3_3')
    
    # 5a
    inception_5a_1_1 = conv_2d(pool4_3_3, 256, filter_size=1, activation='relu', name='inception_5a_1_1')
    inception_5a_3_3_reduce = conv_2d(pool4_3_3, 160, filter_size=1, activation='relu', name='inception_5a_3_3_reduce')
    inception_5a_3_3 = conv_2d(inception_5a_3_3_reduce, 320, filter_size=3, activation='relu', name='inception_5a_3_3')
    inception_5a_5_5_reduce = conv_2d(pool4_3_3, 32, filter_size=1, activation='relu', name='inception_5a_5_5_reduce')
    inception_5a_5_5 = conv_2d(inception_5a_5_5_reduce, 128, filter_size=5,  activation='relu', name='inception_5a_5_5')
    inception_5a_pool = max_pool_2d(pool4_3_3, kernel_size=3, strides=1,  name='inception_5a_pool')
    inception_5a_pool_1_1 = conv_2d(inception_5a_pool, 128, filter_size=1, activation='relu', name='inception_5a_pool_1_1')
    inception_5a_output = merge([inception_5a_1_1, inception_5a_3_3, inception_5a_5_5, inception_5a_pool_1_1], axis=3, mode='concat')
    
    # 5b
    inception_5b_1_1 = conv_2d(inception_5a_output, 384, filter_size=1, activation='relu', name='inception_5b_1_1')
    inception_5b_3_3_reduce = conv_2d(inception_5a_output, 192, filter_size=1, activation='relu', name='inception_5b_3_3_reduce')
    inception_5b_3_3 = conv_2d(inception_5b_3_3_reduce, 384,  filter_size=3, activation='relu', name='inception_5b_3_3')
    inception_5b_5_5_reduce = conv_2d(inception_5a_output, 48, filter_size=1, activation='relu', name='inception_5b_5_5_reduce')
    inception_5b_5_5 = conv_2d(inception_5b_5_5_reduce, 128, filter_size=5, activation='relu', name='inception_5b_5_5')
    inception_5b_pool = max_pool_2d(inception_5a_output, kernel_size=3, strides=1,  name='inception_5b_pool')
    inception_5b_pool_1_1 = conv_2d(inception_5b_pool, 128, filter_size=1, activation='relu', name='inception_5b_pool_1_1')
    inception_5b_output = merge([inception_5b_1_1, inception_5b_3_3, inception_5b_5_5, inception_5b_pool_1_1], axis=3, mode='concat')
    pool5_7_7 = avg_pool_2d(inception_5b_output, kernel_size=7, strides=1)
    pool5_7_7 = dropout(pool5_7_7, 0.4)
    
    # fc
    loss = fully_connected(pool5_7_7, 17, activation='softmax')
    network = regression(loss, optimizer='momentum',
                         loss='categorical_crossentropy',
                         learning_rate=0.001)
    
    # to train
    model = tflearn.DNN(network, checkpoint_path='model_googlenet',
    max_checkpoints=1, tensorboard_verbose=2)
    
    
    # https://github.com/tflearn/tflearn/blob/master/examples/images/densenet.py
    # Building Residual Network
    net = tflearn.input_data(shape=[None, 32, 32, 3],
                             data_preprocessing=img_prep,
                             data_augmentation=img_aug)
    net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
    net = tflearn.densenet_block(net, nb_layers, k)
    net = tflearn.densenet_block(net, nb_layers, k)
    net = tflearn.densenet_block(net, nb_layers, k)
    net = tflearn.global_avg_pool(net)
    
    # Regression
    net = tflearn.fully_connected(net, 10, activation='softmax')
    opt = tflearn.Nesterov(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
    net = tflearn.regression(net, optimizer=opt,
                             loss='categorical_crossentropy')
    # Training
    model = tflearn.DNN(net, checkpoint_path='model_densenet_cifar10',
                        max_checkpoints=10, tensorboard_verbose=0,
    clip_gradients=0.)
    
    # https://github.com/AhmetHamzaEmra/tflearn/blob/master/examples/images/VGG19.py
    # Building 'VGG Network'
    input_layer = input_data(shape=[None, 224, 224, 3])
    
    block1_conv1 = conv_2d(input_layer, 64, 3, activation='relu', name='block1_conv1')
    block1_conv2 = conv_2d(block1_conv1, 64, 3, activation='relu', name='block1_conv2')
    block1_pool = max_pool_2d(block1_conv2, 2, strides=2, name = 'block1_pool')
    
    block2_conv1 = conv_2d(block1_pool, 128, 3, activation='relu', name='block2_conv1')
    block2_conv2 = conv_2d(block2_conv1, 128, 3, activation='relu', name='block2_conv2')
    block2_pool = max_pool_2d(block2_conv2, 2, strides=2, name = 'block2_pool')
    
    block3_conv1 = conv_2d(block2_pool, 256, 3, activation='relu', name='block3_conv1')
    block3_conv2 = conv_2d(block3_conv1, 256, 3, activation='relu', name='block3_conv2')
    block3_conv3 = conv_2d(block3_conv2, 256, 3, activation='relu', name='block3_conv3')
    block3_conv4 = conv_2d(block3_conv3, 256, 3, activation='relu', name='block3_conv4')
    block3_pool = max_pool_2d(block3_conv4, 2, strides=2, name = 'block3_pool')
    
    block4_conv1 = conv_2d(block3_pool, 512, 3, activation='relu', name='block4_conv1')
    block4_conv2 = conv_2d(block4_conv1, 512, 3, activation='relu', name='block4_conv2')
    block4_conv3 = conv_2d(block4_conv2, 512, 3, activation='relu', name='block4_conv3')
    block4_conv4 = conv_2d(block4_conv3, 512, 3, activation='relu', name='block4_conv4')
    block4_pool = max_pool_2d(block4_conv4, 2, strides=2, name = 'block4_pool')
    
    block5_conv1 = conv_2d(block4_pool, 512, 3, activation='relu', name='block5_conv1')
    block5_conv2 = conv_2d(block5_conv1, 512, 3, activation='relu', name='block5_conv2')
    block5_conv3 = conv_2d(block5_conv2, 512, 3, activation='relu', name='block5_conv3')
    block5_conv4 = conv_2d(block5_conv3, 512, 3, activation='relu', name='block5_conv4')
    block4_pool = max_pool_2d(block5_conv4, 2, strides=2, name = 'block4_pool')
    flatten_layer = tflearn.layers.core.flatten (block4_pool, name='Flatten')
    
    
    fc1 = fully_connected(flatten_layer, 4096, activation='relu')
    dp1 = dropout(fc1, 0.5)
    fc2 = fully_connected(dp1, 4096, activation='relu')
    dp2 = dropout(fc2, 0.5)
    
    network = fully_connected(dp2, 1000, activation='rmsprop')
    
    regression = tflearn.regression(network, optimizer='adam',
                                loss='categorical_crossentropy',
                                learning_rate=0.001)
    
    model = tflearn.DNN(regression, checkpoint_path='vgg19',
    tensorboard_dir="./logs")
    
    #https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network.py
    # Building 'VGG Network'
    network = input_data(shape=[None, 224, 224, 3])
    
    network = conv_2d(network, 64, 3, activation='relu')
    network = conv_2d(network, 64, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    
    network = conv_2d(network, 128, 3, activation='relu')
    network = conv_2d(network, 128, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    
    network = conv_2d(network, 256, 3, activation='relu')
    network = conv_2d(network, 256, 3, activation='relu')
    network = conv_2d(network, 256, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    
    network = conv_2d(network, 512, 3, activation='relu')
    network = conv_2d(network, 512, 3, activation='relu')
    network = conv_2d(network, 512, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    
    network = conv_2d(network, 512, 3, activation='relu')
    network = conv_2d(network, 512, 3, activation='relu')
    network = conv_2d(network, 512, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    
    network = fully_connected(network, 4096, activation='relu')
    network = dropout(network, 0.5)
    network = fully_connected(network, 4096, activation='relu')
    network = dropout(network, 0.5)
    network = fully_connected(network, 17, activation='softmax')
    
    network = regression(network, optimizer='rmsprop',
                         loss='categorical_crossentropy',
                         learning_rate=0.0001)
    
    # Training
    model = tflearn.DNN(network, checkpoint_path='model_vgg',
    max_checkpoints=1, tensorboard_verbose=0)
    
    #https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py
    # Building 'AlexNet'
    network = input_data(shape=[None, 227, 227, 3])
    network = conv_2d(network, 96, 11, strides=4, activation='relu')
    network = max_pool_2d(network, 3, strides=2)
    network = local_response_normalization(network)
    network = conv_2d(network, 256, 5, activation='relu')
    network = max_pool_2d(network, 3, strides=2)
    network = local_response_normalization(network)
    network = conv_2d(network, 384, 3, activation='relu')
    network = conv_2d(network, 384, 3, activation='relu')
    network = conv_2d(network, 256, 3, activation='relu')
    network = max_pool_2d(network, 3, strides=2)
    network = local_response_normalization(network)
    network = fully_connected(network, 4096, activation='tanh')
    network = dropout(network, 0.5)
    network = fully_connected(network, 4096, activation='tanh')
    network = dropout(network, 0.5)
    network = fully_connected(network, 17, activation='softmax')
    network = regression(network, optimizer='momentum',
                         loss='categorical_crossentropy',
                         learning_rate=0.001)
    
    # Training
    model = tflearn.DNN(network, checkpoint_path='model_alexnet',
    max_checkpoints=1, tensorboard_verbose=2)
    
    
    #https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py
    # Building convolutional network
    network = input_data(shape=[None, 28, 28, 1], name='input')
    network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
    network = max_pool_2d(network, 2)
    network = local_response_normalization(network)
    network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
    network = max_pool_2d(network, 2)
    network = local_response_normalization(network)
    network = fully_connected(network, 128, activation='tanh')
    network = dropout(network, 0.8)
    network = fully_connected(network, 256, activation='tanh')
    network = dropout(network, 0.8)
    network = fully_connected(network, 10, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.01,
                         loss='categorical_crossentropy', name='target')
    
    # Training
    model = tflearn.DNN(network, tensorboard_verbose=0)
  • 相关阅读:
    [51nod] 1301 集合异或和
    [BZOJ] 1088: [SCOI2005]扫雷Mine
    [LUOGU] P4251 [SCOI2015]小凸玩矩阵
    8.21模拟赛
    [BZOJ] 3163: [Heoi2013]Eden的新背包问题
    [BZOJ] 1001: [BeiJing2006]狼抓兔子
    【NOIP2017提高A组冲刺11.8】好文章
    [BZOJ] 1520: [POI2006]Szk-Schools
    [BZOJ] 1877: [SDOI2009]晨跑
    day23(事务管理)
  • 原文地址:https://www.cnblogs.com/bonelee/p/8529833.html
Copyright © 2011-2022 走看看